Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Seismogenic lavas and explosive eruption forecasting

Abstract

Volcanic dome-building episodes commonly exhibit acceleration in both effusive discharge rate and seismicity before explosive eruptions1. This should enable the application of material failure forecasting methods to eruption forecasting2,3. To date, such methods have been based exclusively on the seismicity of the country rock4. It is clear, however, that the rheology and deformation rate of the lava ultimately dictate eruption style5. The highly crystalline lavas involved in these eruptions are pseudoplastic fluids that exhibit a strong component of shear thinning as their deformation accelerates across the ductile to brittle transition6. Thus, understanding the nature of the ductile–brittle transition in dome lavas may well hold the key to an accurate description of dome growth and stability. Here we present the results of rheological experiments with continuous microseismic monitoring, which reveal that dome lavas are seismogenic and that the character of the seismicity changes markedly across the ductile–brittle transition until complete brittle failure occurs at high strain rates. We conclude that magma seismicity, combined with failure forecasting methods, could potentially be applied successfully to dome-building eruptions for volcanic forecasting.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Experimental results for successive deformation of a Colima lava melt at 8, 16 and 24 MPa.
Figure 2: Acoustic-emission energy release rates for Colima and Bezymianny lavas at different strain rates.
Figure 3: Anisotropy changes associated with deformation.
Figure 4: Application of the FFM to a Colima lava.

References

  1. Sparks, R. S. J. Forecasting volcanic eruptions. Earth Planet. Sci. Lett. 210, 1–15 (2003)

    ADS  CAS  Article  Google Scholar 

  2. Kilburn, C. R. J. Multiscale fracturing as a key to forecasting volcanic eruptions. J. Volcanol. Geotherm. Res. 125, 271–289 (2003)

    ADS  CAS  Article  Google Scholar 

  3. Voight, B. A method for prediction of volcanic eruptions. Nature 332, 125–130 (1988)

    ADS  Article  Google Scholar 

  4. Voight, B. A relation to describe rate-dependent material failure. Science 243, 200–203 (1989)

    ADS  CAS  Article  Google Scholar 

  5. Dingwell, D. B. Volcanic dilemma: Flow or blow? Science 273, 1054–1055 (1996)

    ADS  CAS  Article  Google Scholar 

  6. Lavallée, Y., Hess, K. U., Cordonnier, B. & Dingwell, D. B. A non-Newtonian rheological law for highly-crystalline dome lavas. Geology 35, 843–846 (2007)

    ADS  Article  Google Scholar 

  7. McNutt, S. R. Volcanic seismology. Annu. Rev. Earth Planet. Sci. 33, 461–491 (2005)

    ADS  CAS  Article  Google Scholar 

  8. Neuberg, J., Luckett, R., Baptie, B. & Olsen, K. Models of tremor and low-frequency earthquake swarms on Montserrat. J. Volcanol. Geotherm. Res. 101, 83–104 (2000)

    ADS  CAS  Article  Google Scholar 

  9. Neuberg, J. Characteristics and causes of shallow seismicity in andesite volcanoes. Phil. Trans. R. Soc. Lond. A 358, 1533–1546 (2000)

    ADS  Article  Google Scholar 

  10. Chouet, B. A. Long-period volcano seismicity: Its source and use in eruption forecasting. Nature 380, 309–316 (1996)

    ADS  CAS  Article  Google Scholar 

  11. Harrington, R. M. & Brodsky, E. E. Volcanic hybrid earthquakes that are brittle-failure events. Geophys. Res. Lett. 34 10.1029/2006GL028714 (2007)

  12. Neuberg, J. W. et al. The trigger mechanism of low-frequency earthquakes on Montserrat. J. Volcanol. Geotherm. Res. 153, 37–50 (2006)

    ADS  CAS  Article  Google Scholar 

  13. Tuffen, H. & Dingwell, D. B. Fault textures in volcanic conduits: Evidence for seismic trigger mechanisms during silicic eruptions. Bull. Volcanol. 67, 370–387 (2005)

    ADS  Article  Google Scholar 

  14. Tuffen, H., Dingwell, D. B. & Pinkerton, H. Repeated fracture and healing of silicic magma generate flow banding and earthquakes? Geology 31, 1089–1092 (2003)

    ADS  Article  Google Scholar 

  15. Gonnermann, H. M. & Manga, M. Explosive volcanism may not be an inevitable consequence of magma fragmentation. Nature 426, 432–435 (2003)

    ADS  CAS  Article  Google Scholar 

  16. Papale, P. Strain-induced magma fragmentation in explosive eruptions. Nature 397, 425–428 (1999)

    ADS  CAS  Article  Google Scholar 

  17. Hess, K. U., Cordonnier, B., Lavalée, Y. & Dingwell, D. B. Viscous heating in rhyolite: an in situ determination. Earth Planet. Sci. Lett. (in the press)

  18. Webb, S. L. & Dingwell, D. B. The onset of non-Newtonian rheology of silicate melts — a fiber elongation study. Phys. Chem. Miner. 17, 125–132 (1990)

    ADS  CAS  Article  Google Scholar 

  19. Petford, N. Rheology of granitic magmas during ascent and emplacement. Annu. Rev. Earth Planet. Sci. 31, 399–427 (2003)

    ADS  CAS  Article  Google Scholar 

  20. Costa, A. Viscosity of high crystal content melts: Dependence on solid fraction. Geophys. Res. Lett. 32 10.1029/2005GL024303 (2005)

    Article  Google Scholar 

  21. Prikryl, R., Lokajicek, T., Li, C. & Rudajev, V. Acoustic emission characteristics and failure of uniaxially stressed granitic rocks: The effect of rock fabric. Rock Mech. Rock Eng. 36, 255–270 (2003)

    Article  Google Scholar 

  22. Dobson, D. P., Meredith, P. G. & Boon, S. A. Detection and analysis of microseismicity in multi anvil experiments. Phys. Earth Planet. Inter. 143–44, 337–346 (2004)

    ADS  Article  Google Scholar 

  23. Ojala, I. O., Main, I. G. & Ngwenya, B. T. Strain rate and temperature dependence of Omori law scaling constants of AE data: Implications for earthquake foreshock-aftershock sequences. Geophys. Res. Lett. 31 10.1029/2004GL020781 (2004)

  24. Chmelik, F. et al. An evaluation of the creep characteristics of an AZ91 magnesium alloy composite using acoustic emission. Mater. Sci. Eng. A 338, 1–7 (2002)

    Article  Google Scholar 

  25. Gerik, A. & Kruhl, J. H. Towards automated pattern quantification: Time-efficient assessment of anisotropy of 2D patterns with AMOCADO. Comput. Geosci. (in the press)

  26. Tokarev, P. On a possibility of forecasting of Bezymianny volcano eruptions according to seismic data. Bull. Volcanol. 26, 379–386 (1963)

    ADS  Article  Google Scholar 

  27. Cornelius, R. R. & Voight, B. Graphical and PC-software analysis of volcano eruption precursors according to the materials failure forecast method (FFM). J. Volcanol. Geotherm. Res. 64, 295–320 (1995)

    ADS  CAS  Article  Google Scholar 

  28. De la Cruz-Reyna, S. & Reyes-Davila, G. A. A model to describe precursory material-failure phenomena: Applications to short-term forecasting at Colima volcano, Mexico. Bull. Volcanol. 63, 297–308 (2001)

    ADS  Article  Google Scholar 

  29. Smith, R., Kilburn, C. R. J. & Sammonds, P. R. Rock fracture as a precursor to lava dome eruptions at Mount St Helens from June 1980 to October 1986. Bull. Volcanol. 69, 681–693 (2007)

    ADS  Article  Google Scholar 

  30. Iverson, R. M. et al. Dynamics of seismogenic volcanic extrusion at Mount St. Helens in 2004–05. Geology 444, 439–443 (2006)

    CAS  Google Scholar 

Download references

Acknowledgements

We thank O. Spieler for collecting the samples, K. T. Fehr, S. Bernstein and J. Pawlowski for assistance during microprobe analyses and M. Sieber for technical assistance. This is publication no. GEOTECH-315 of the research and development programme GEOTECHNOLOGIEN.

Author Contributions Y.L., P.G.M. and B.C. performed the acoustic-emission experiments; Y.L. analysed the data under the complementary supervisions of D.B.D., K.-U.H. and J.W.; and A.G. and J.H.K. performed the quantitative pattern analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Lavallée.

Supplementary information

Supplementary information

The file contains Supplementary Methods, Supplementary Figures 1-2 and additional references. (PDF 217 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lavallée, Y., Meredith, P., Dingwell, D. et al. Seismogenic lavas and explosive eruption forecasting. Nature 453, 507–510 (2008). https://doi.org/10.1038/nature06980

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06980

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing