Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanism of homologous recombination from the RecA–ssDNA/dsDNA structures

Abstract

The RecA family of ATPases mediates homologous recombination, a reaction essential for maintaining genomic integrity and for generating genetic diversity. RecA, ATP and single-stranded DNA (ssDNA) form a helical filament that binds to double-stranded DNA (dsDNA), searches for homology, and then catalyses the exchange of the complementary strand, producing a new heteroduplex. Here we have solved the crystal structures of the Escherichia coli RecA–ssDNA and RecA–heteroduplex filaments. They show that ssDNA and ATP bind to RecA–RecA interfaces cooperatively, explaining the ATP dependency of DNA binding. The ATP γ-phosphate is sensed across the RecA–RecA interface by two lysine residues that also stimulate ATP hydrolysis, providing a mechanism for DNA release. The DNA is underwound and stretched globally, but locally it adopts a B-DNA-like conformation that restricts the homology search to Watson–Crick-type base pairing. The complementary strand interacts primarily through base pairing, making heteroduplex formation strictly dependent on complementarity. The underwound, stretched filament conformation probably evolved to destabilize the donor duplex, freeing the complementary strand for homology sampling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the presynaptic nucleoprotein filament.
Figure 2: Each nucleotide triplet is bound by three consecutive RecA protomers.
Figure 3: The non-hydrolysable ATP analogue ADP-AlF 4 binds at a RecA–RecA interface.
Figure 4: Structure of the postsynaptic nucleoprotein filament.
Figure 5: Complementary-strand binding.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

The coordinates and structure factors have been deposited in the Protein Data Bank under accession codes 3CMW (RecA5–(dT)15), 3CMU (RecA6–(dT)18), 3CMX (RecA5–(dT)15–(dA)12), 3CMT (RecA5–d(T5C3AC2T4)–d(G2TG3)) and 3CMV (RecA4).

References

  1. Lusetti, S. L. & Cox, M. M. The bacterial RecA protein and the recombinational DNA repair of stalled replication forks. Annu. Rev. Biochem. 71, 71–100 (2002)

    Article  CAS  Google Scholar 

  2. Cromie, G. A., Connelly, J. C. & Leach, D. R. Recombination at double-strand breaks and DNA ends: conserved mechanisms from phage to humans. Mol. Cell 8, 1163–1174 (2001)

    Article  CAS  Google Scholar 

  3. Khanna, K. K. & Jackson, S. P. DNA double-strand breaks: signaling, repair and the cancer connection. Nature Genet. 27, 247–254 (2001)

    Article  CAS  Google Scholar 

  4. Neale, M. J. & Keeney, S. Clarifying the mechanics of DNA strand exchange in meiotic recombination. Nature 442, 153–158 (2006)

    Article  ADS  CAS  Google Scholar 

  5. Radding, C. M. Recombination activities of E. coli RecA protein. Cell 25, 3–4 (1981)

    Article  CAS  Google Scholar 

  6. Shinohara, A., Ogawa, H. & Ogawa, T. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69, 457–470 (1992)

    Article  CAS  Google Scholar 

  7. Seitz, E. M., Brockman, J. P., Sandler, S. J., Clark, A. J. & Kowalczykowski, S. C. RadA protein is an archaeal RecA protein homolog that catalyzes DNA strand exchange. Genes Dev. 12, 1248–1253 (1998)

    Article  CAS  Google Scholar 

  8. Bianco, P. R., Tracy, R. B. & Kowalczykowski, S. C. DNA strand exchange proteins: a biochemical and physical comparison. Front. Biosci. 3, D570–D603 (1998)

    Article  CAS  Google Scholar 

  9. Bell, C. E. Structure and mechanism of Escherichia coli RecA ATPase. Mol. Microbiol. 58, 358–366 (2005)

    Article  CAS  Google Scholar 

  10. McGrew, D. A. & Knight, K. L. Molecular design and functional organization of the RecA protein. Crit. Rev. Biochem. Mol. Biol. 38, 385–432 (2003)

    Article  CAS  Google Scholar 

  11. Cox, M. M. The bacterial RecA protein: Structure, function, and regulation. Top. Curr. Gen. 17, 53–94 (2007)

    Article  CAS  Google Scholar 

  12. Stasiak, A. & Di Capua, E. The helicity of DNA in complexes with RecA protein. Nature 299, 185–186 (1982)

    Article  ADS  CAS  Google Scholar 

  13. Yu, X., Jacobs, S. A., West, S. C., Ogawa, T. & Egelman, E. H. Domain structure and dynamics in the helical filaments formed by RecA and Rad51 on DNA. Proc. Natl Acad. Sci. USA 98, 8419–8424 (2001)

    Article  ADS  CAS  Google Scholar 

  14. Flory, J., Tsang, S. S. & Muniyappa, K. Isolation and visualization of active presynaptic filaments of RecA protein and single-stranded DNA. Proc. Natl Acad. Sci. USA 81, 7026–7030 (1984)

    Article  ADS  CAS  Google Scholar 

  15. Kelley De Zutter, J., Forget, A. L., Logan, K. M. & Knight, K. L. Phe217 regulates the transfer of allosteric information across the subunit interface of the RecA protein filament. Structure 9, 47–55 (2001)

    Article  CAS  Google Scholar 

  16. Galletto, R., Amitani, I., Baskin, R. J. & Kowalczykowski, S. C. Direct observation of individual RecA filaments assembling on single DNA molecules. Nature 443, 875–878 (2006)

    Article  ADS  CAS  Google Scholar 

  17. Joo, C. et al. Real-time observation of RecA filament dynamics with single monomer resolution. Cell 126, 515–527 (2006)

    Article  CAS  Google Scholar 

  18. VanLoock, M. S. et al. ATP-mediated conformational changes in the RecA filament. Structure 11, 187–196 (2003)

    Article  CAS  Google Scholar 

  19. DiCapua, E., Schnarr, M., Ruigrok, R. W., Lindner, P. & Timmins, P. A. Complexes of RecA protein in solution. A study by small angle neutron scattering. J. Mol. Biol. 214, 557–570 (1990)

    Article  CAS  Google Scholar 

  20. Morimatsu, K., Takahashi, M. & Norden, B. Arrangement of RecA protein in its active filament determined by polarized-light spectroscopy. Proc. Natl Acad. Sci. USA 99, 11688–11693 (2002)

    Article  ADS  CAS  Google Scholar 

  21. Ogawa, T., Yu, X., Shinohara, A. & Egelman, E. H. Similarity of the yeast Rad51 filament to the bacterial RecA filament. Science 259, 1896–1899 (1993)

    Article  ADS  CAS  Google Scholar 

  22. Story, R. M., Weber, I. T. & Steitz, T. A. The structure of the E. coli RecA protein monomer and polymer. Nature 355, 318–325 (1992)

    Article  ADS  CAS  Google Scholar 

  23. Wu, Y., He, Y., Moya, I. A., Qian, X. & Luo, Y. Crystal structure of archaeal recombinase RadA: a snapshot of its extended conformation. Mol. Cell 15, 423–435 (2004)

    Article  CAS  Google Scholar 

  24. Conway, A. B. et al. Crystal structure of a Rad51 filament. Nature Struct. Mol. Biol. 11, 791–796 (2004)

    Article  CAS  Google Scholar 

  25. Yu, X., VanLoock, M. S., Yang, S., Reese, J. T. & Egelman, E. H. What is the structure of the RecA-DNA filament? Curr. Protein Pept. Sci. 5, 73–79 (2004)

    Article  CAS  Google Scholar 

  26. Stasiak, A., Egelman, E. H. & Howard-Flanders, P. Structure of helical RecA-DNA complexes. III. The structural polarity of RecA filaments and functional polarity in the RecA-mediated strand exchange reaction. J. Mol. Biol. 202, 659–662 (1988)

    Article  CAS  Google Scholar 

  27. Wang, Y. & Adzuma, K. Differential proximity probing of two DNA binding sites in the Escherichia coli RecA protein using photo-cross-linking methods. Biochemistry 35, 3563–3571 (1996)

    Article  CAS  Google Scholar 

  28. Malkov, V. A. & Camerini-Otero, R. D. Photocross-links between single-stranded DNA and Escherichia coli RecA protein map to loops L1 (amino acid residues 157–164) and L2 (amino acid residues 195–209). J. Biol. Chem. 270, 30230–30233 (1995)

    Article  CAS  Google Scholar 

  29. Hortnagel, K. et al. Saturation mutagenesis of the E. coli RecA loop L2 homologous DNA pairing region reveals residues essential for recombination and recombinational repair. J. Mol. Biol. 286, 1097–1106 (1999)

    Article  CAS  Google Scholar 

  30. Larminat, F., Cazaux, C., Germanier, M. & Defais, M. New mutations in and around the L2 disordered loop of the RecA protein modulate recombination and/or coprotease activity. J. Bacteriol. 174, 6264–6269 (1992)

    Article  CAS  Google Scholar 

  31. Cox, J. M., Abbott, S. N., Chitteni-Pattu, S., Inman, R. B. & Cox, M. M. Complementation of one RecA protein point mutation by another. Evidence for trans catalysis of ATP hydrolysis. J. Biol. Chem. 281, 12968–12975 (2006)

    Article  CAS  Google Scholar 

  32. Nguyen, T. T., Muench, K. A. & Bryant, F. R. Inactivation of the RecA protein by mutation of histidine 97 or lysine 248 at the subunit interface. J. Biol. Chem. 268, 3107–3113 (1993)

    CAS  PubMed  Google Scholar 

  33. Morimatsu, K. & Horii, T. Analysis of the DNA binding site of Escherichia coli RecA protein. Adv. Biophys. 31, 23–48 (1995)

    Article  CAS  Google Scholar 

  34. Campbell, M. J. & Davis, R. W. Toxic mutations in the recA gene of E. coli prevent proper chromosome segregation. J. Mol. Biol. 286, 417–435 (1999)

    Article  CAS  Google Scholar 

  35. Scheffzek, K. et al. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333–338 (1997)

    Article  CAS  Google Scholar 

  36. Daumke, O., Weyand, M., Chakrabarti, P. P., Vetter, I. R. & Wittinghofer, A. The GTPase-activating protein Rap1GAP uses a catalytic asparagine. Nature 429, 197–201 (2004)

    Article  ADS  CAS  Google Scholar 

  37. Skiba, M. C. & Knight, K. L. Functionally important residues at a subunit interface site in the RecA protein from Escherichia coli . J. Biol. Chem. 269, 3823–3828 (1994)

    CAS  PubMed  Google Scholar 

  38. Skiba, M. C., Logan, K. M. & Knight, K. L. Intersubunit proximity of residues in the RecA protein as shown by engineered disulfide cross-links. Biochemistry 38, 11933–11941 (1999)

    Article  CAS  Google Scholar 

  39. Kelley, J. A. & Knight, K. L. Allosteric regulation of RecA protein function is mediated by Gln194. J. Biol. Chem. 272, 25778–25782 (1997)

    Article  CAS  Google Scholar 

  40. Kunkel, T. A. & Bebenek, K. DNA replication fidelity. Annu. Rev. Biochem. 69, 497–529 (2000)

    Article  CAS  Google Scholar 

  41. Ishimori, K. et al. Characterization of a mutant RecA protein that facilitates homologous genetic recombination but not recombinational DNA repair: RecA423. J. Mol. Biol. 264, 696–712 (1996)

    Article  CAS  Google Scholar 

  42. Mazin, A. V. & Kowalczykowski, S. C. The function of the secondary DNA-binding site of RecA protein during DNA strand exchange. EMBO J. 17, 1161–1168 (1998)

    Article  CAS  Google Scholar 

  43. Kurumizaka, H., Ikawa, S., Sarai, A. & Shibata, T. The mutant RecA proteins, RecAR243Q and RecAK245N, exhibit defective DNA binding in homologous pairing. Arch. Biochem. Biophys. 365, 83–91 (1999)

    Article  CAS  Google Scholar 

  44. Leger, J. F., Robert, J., Bourdieu, L., Chatenay, D. & Marko, J. F. RecA binding to a single double-stranded DNA molecule: a possible role of DNA conformational fluctuations. Proc. Natl Acad. Sci. USA 95, 12295–12299 (1998)

    Article  ADS  CAS  Google Scholar 

  45. Benedict, R. C. & Kowalczykowski, S. C. Increase of the DNA strand assimilation activity of RecA protein by removal of the C terminus and structure-function studies of the resulting protein fragment. J. Biol. Chem. 263, 15513–15520 (1988)

    CAS  PubMed  Google Scholar 

  46. Mikawa, T., Masui, R., Ogawa, T., Ogawa, H. & Kuramitsu, S. N-terminal 33 amino acid residues of Escherichia coli RecA protein contribute to its self-assembly. J. Mol. Biol. 250, 471–483 (1995)

    Article  CAS  Google Scholar 

  47. Dutreix, M., Burnett, B., Bailone, A., Radding, C. M. & Devoret, R. A partially deficient mutant, RecA1730, that fails to form normal nucleoprotein filaments. Mol. Gen. Genet. 232, 489–497 (1992)

    Article  CAS  Google Scholar 

  48. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  49. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

  50. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. King for mass spectroscopic analysis; H. Erdjument-Bromage for N-terminal sequencing; the staff of the Advanced Photon Source ID24 beamlines for help with data collection; M. Minto for administrative assistance; and the members of the Pavletich laboratory for help and discussions. This work was supported by the NIH and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola P. Pavletich.

Supplementary information

Supplementary information

The file contains Supplementary Tables 1-5, Supplementary Figures 1-11 with Legends and additional references (PDF 2798 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Yang, H. & Pavletich, N. Mechanism of homologous recombination from the RecA–ssDNA/dsDNA structures. Nature 453, 489–494 (2008). https://doi.org/10.1038/nature06971

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06971

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing