Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Anatase TiO2 single crystals with a large percentage of reactive facets


Owing to their scientific and technological importance, inorganic single crystals with highly reactive surfaces have long been studied1,2,3,4,5,6,7,8,9,10,11,12,13. Unfortunately, surfaces with high reactivity usually diminish rapidly during the crystal growth process as a result of the minimization of surface energy. A typical example is titanium dioxide (TiO2), which has promising energy and environmental applications14,15,16,17. Most available anatase TiO2 crystals are dominated by the thermodynamically stable {101} facets (more than 94 per cent, according to the Wulff construction10), rather than the much more reactive {001} facets8,9,10,11,12,13,18,19,20. Here we demonstrate that for fluorine-terminated surfaces this relative stability is reversed: {001} is energetically preferable to {101}. We explored this effect systematically for a range of non-metallic adsorbate atoms by first-principle quantum chemical calculations. On the basis of theoretical predictions, we have synthesized uniform anatase TiO2 single crystals with a high percentage (47 per cent) of {001} facets using hydrofluoric acid as a morphology controlling agent. Moreover, the fluorated surface of anatase single crystals can easily be cleaned using heat treatment to render a fluorine-free surface without altering the crystal structure and morphology.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Slab models and calculated surface energies of anatase TiO 2 (001) and (101) surfaces.
Figure 2: SEM images and statistical data for the size and truncation degree of anatase single crystals.
Figure 3: Crystalline phase determination.
Figure 4: Confirmation of the spatial distribution of F atoms in anatase single crystals.


  1. Tian, N., Zhou, Z. Y., Sun, S. G., Ding, Y. & Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316, 732–735 (2007)

    CAS  Article  ADS  PubMed  Google Scholar 

  2. Bikondoa, O. et al. Direct visualization of defect-mediated dissociation of water on TiO2 (110). Nature Mater. 5, 189–192 (2006)

    CAS  Article  ADS  Google Scholar 

  3. Dulub, O. et al. Electron-induced oxygen desorption from the TiO2 (011)-2 × 1 surface leads to self-organized vacancies. Science 317, 1052–1056 (2007)

    CAS  Article  ADS  PubMed  Google Scholar 

  4. Gong, X. Q., Selloni, A., Batzill, M. & Diebold, U. Steps on anatase TiO2 (101). Nature Mater. 5, 665–670 (2006)

    CAS  Article  ADS  Google Scholar 

  5. Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003)

    CAS  Article  ADS  Google Scholar 

  6. Thomas, A. G. et al. Resonant photoemission of anatase TiO2 (101) and (001) single crystals. Phys. Rev. B 67, 035110 (2003)

    Article  ADS  CAS  Google Scholar 

  7. Kavan, L., Grätzel, M., Gilbert, S. E., Klemenz, C. & Scheel, H. J. Electrochemical and photoelectrochemical investigation of single-crystal anatase. J. Am. Chem. Soc. 118, 6716–6723 (1996)

    CAS  Article  Google Scholar 

  8. Gong, X. Q. & Selloni, A. Reactivity of anatase TiO2 nanoparticles: the role of the minority (001) surface. J. Phys. Chem. B 109, 19560–19562 (2005)

    CAS  Article  PubMed  Google Scholar 

  9. Herman, G. S., Sievers, M. R. & Gao, Y. Structure determination of the two-domain (1 × 4) anatase TiO2(001) surface. Phys. Rev. Lett. 84, 3354–3357 (2000)

    CAS  Article  ADS  PubMed  Google Scholar 

  10. Lazzeri, M., Vittadini, A. & Selloni, A. Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys. Rev. B 63, 155409 (2001)

    Article  ADS  CAS  Google Scholar 

  11. Vittadini, A., Selloni, A., Rotzinger, F. P. & Grätzel, M. Structure and energetics of water adsorbed at TiO2 anatase (101) and (001) surfaces. Phys. Rev. Lett. 81, 2954–2957 (1998)

    CAS  Article  ADS  Google Scholar 

  12. Vittadini, A., Casarin, M. & Selloni, A. Chemistry of and on TiO2-anatase surfaces by DFT calculations: a partial review. Theor. Chem. Acc. 117, 663–671 (2007)

    CAS  Article  Google Scholar 

  13. Lazzeri, M. & Selloni, A. Stress-driven reconstruction of an oxide surface: the anatase TiO2(001)-(1 × 4) surface. Phys. Rev. Lett. 87, 266105 (2001)

    CAS  Article  ADS  PubMed  Google Scholar 

  14. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    CAS  Article  ADS  PubMed  Google Scholar 

  15. O’Regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)

    Article  ADS  Google Scholar 

  16. Grätzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001)

    Article  ADS  PubMed  Google Scholar 

  17. Barbé, C. J. et al. Nanocrystalline titanium oxide electrodes for photovoltaic applications. J. Am. Ceram. Soc. 80, 3157–3171 (1997)

    Article  Google Scholar 

  18. Penn, R. L. & Banfield, J. F. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania. Geochim. Cosmochim. Acta 63, 1549–1557 (1999)

    CAS  Article  ADS  Google Scholar 

  19. Zaban, A., Aruna, S. T., Tirosh, S., Gregg, B. A. & Mastai, Y. The effect of the preparation condition of TiO2 colloids on their surface structures. J. Phys. Chem. B 104, 4130–4133 (2000)

    CAS  Article  Google Scholar 

  20. Jun, Y. W. et al. Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO2 nanocrystals. J. Am. Chem. Soc. 125, 15981–15985 (2003)

    CAS  Article  PubMed  Google Scholar 

  21. Barnard, A. S. & Curtiss, L. A. Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry. Nano Lett. 5, 1261–1266 (2005)

    CAS  Article  ADS  PubMed  Google Scholar 

  22. Chen, X. & Mao, S. S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007)

    CAS  Article  PubMed  Google Scholar 

  23. Izumi, F. The polymorphic crystallization of titanium (IV) oxide under hydrothermal conditions. II. The roles of inorganic anions in the nucleation of rutile and anatase from acid solutions. Bull. Chem. Soc. Jpn 51, 1771–1776 (1978)

    CAS  Article  Google Scholar 

  24. Berger, H., Tang, H. & Lévy, F. Growth and Raman spectroscopic characterization of TiO2 anatase single crystals. J. Cryst. Growth 130, 108–112 (1993)

    CAS  Article  ADS  Google Scholar 

  25. Zmbov, K. F. & Margrave, J. L. Mass spectrometric studies at high temperatures. XVI. Sublimation pressures for TiF3 (g) and the stabilities of TiF2 (g) and TiF (g). J. Phys. Chem. 71, 2893–2895 (1967)

    CAS  Article  Google Scholar 

  26. Huber, K. P. & Herzberg, G. in Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules 642 (Van Nostrand Reinhold, New York, 1979)

    Book  Google Scholar 

  27. Barnard, A. S. & Zapol, P. A model for the phase stability of arbitrary nanoparticles as a function of size and shape. J. Chem. Phys. 121, 4276–4283 (2004)

    CAS  Article  ADS  PubMed  Google Scholar 

  28. Yang, H. G. & Zeng, H. C. Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening. J. Phys. Chem. B 108, 3492–3495 (2004)

    CAS  Article  Google Scholar 

  29. Yu, J. C., Yu, J., Ho, W., Jiang, Z. & Zhang, L. Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater. 14, 3808–3816 (2002)

    CAS  Article  Google Scholar 

  30. Lou, X. W. & Zeng, H. C. Complex α-MoO3 nanostructures with external bonding capacity for self-assembly. J. Am. Chem. Soc. 125, 2697–2704 (2003)

    CAS  Article  PubMed  Google Scholar 

  31. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. B 140, A1133–A1138 (1965)

    MathSciNet  Article  ADS  Google Scholar 

  32. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    CAS  Article  ADS  PubMed  Google Scholar 

  33. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)

    CAS  Article  ADS  Google Scholar 

  34. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    CAS  Article  ADS  Google Scholar 

  35. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)

    CAS  Article  Google Scholar 

  36. Yang, H. G. & Zeng, H. C. Creation of intestine-like interior space for metal-oxide nanostructures with a quasi-reverse emulsion. Angew. Chem. Int. Ed. 43, 5206–5209 (2004)

    CAS  Article  Google Scholar 

  37. Yang, H. G. & Zeng, H. C. Synthetic architectures of TiO2/H2Ti5O11·H2O, ZnO/H2Ti5O11·H2O, ZnO/TiO2/H2Ti5O11·H2O and ZnO/TiO2 nanocomposites. J. Am. Chem. Soc. 127, 270–278 (2005)

    CAS  Article  PubMed  Google Scholar 

Download references


This work was supported by the Australian Research Council. H.G.Y. wishes to express his gratitude to the National University of Singapore, where the preliminary experimental work was carried out. The authors acknowledge Qiu Hong Hu for her help with statistical analysis.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Shi Zhang Qiao or Gao Qing Lu.

Supplementary information

Supplementray Information

The file contains Supplementary Notes and Supplementary Figures S1-S8 with legends. The Supplementary Information is divided into two parts: Calculation Section and Experiment Section. Calculation Section contains structural models, computational methods, reliability of methods, extensive test based on (4x4) slab models, stabilization mechanism of fluorine atoms, and additional references. Experiment Section has 5 additional figures (Figure S4-S8 with legends). (PDF 4965 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yang, H., Sun, C., Qiao, S. et al. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453, 638–641 (2008).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing