Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum oscillations in a molecular magnet

A Corrigendum to this article was published on 19 August 2010

Abstract

The term ‘molecular magnet’ generally refers to a molecular entity containing several magnetic ions whose coupled spins generate a collective spin, S (ref. 1). Such complex multi-spin systems provide attractive targets for the study of quantum effects at the mesoscopic scale. In these molecules, the large energy barriers between collective spin states can be crossed by thermal activation or quantum tunnelling, depending on the temperature or an applied magnetic field2,3,4. There is the hope that these mesoscopic spin states can be harnessed for the realization of quantum bits—‘qubits’, the basic building blocks of a quantum computer—based on molecular magnets5,6,7,8. But strong decoherence9 must be overcome if the envisaged applications are to become practical. Here we report the observation and analysis of Rabi oscillations (quantum oscillations resulting from the coherent absorption and emission of photons driven by an electromagnetic wave10) of a molecular magnet in a hybrid system, in which discrete and well-separated magnetic clusters are embedded in a self-organized non-magnetic environment. Each cluster contains 15 antiferromagnetically coupled S = 1/2 spins, leading to an S = 1/2 collective ground state11,12,13. When this system is placed into a resonant cavity, the microwave field induces oscillatory transitions between the ground and excited collective spin states, indicative of long-lived quantum coherence. The present observation of quantum oscillations suggests that low-dimension self-organized qubit networks having coherence times of the order of 100 μs (at liquid helium temperatures) are a realistic prospect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and exchange interaction pathways of the cluster anion .
Figure 2: Low-energy EPR transitions.
Figure 3: Generation and detection of Rabi oscillations.
Figure 4: Distribution of spin-echo intensities.

Similar content being viewed by others

References

  1. Gatteschi, D., Sessoli, R. & Villain, J. Molecular Nanomagnets (Oxford Univ. Press, Oxford, UK, 2006)

    Book  Google Scholar 

  2. Barbara, B. et al. Mesoscopic quantum tunneling of the magnetization. J. Magn. Magn. Mater. 140–144, 1825–1828 (1995)

    Article  ADS  Google Scholar 

  3. Thomas, L. et al. Macroscopic quantum tunneling of magnetization in a single crystal of nanomagnets. Nature 383, 145–147 (1996)

    Article  ADS  CAS  Google Scholar 

  4. Friedman, J. R. et al. Macroscopic measurements of resonant magnetization tunneling in high spin molecules. Phys. Rev. Lett. 76, 3830–3833 (1996)

    Article  ADS  CAS  Google Scholar 

  5. Leuenberger, M. N. & Loss, D. Quantum computing in molecular magnets. Nature 410, 789–793 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Aharonov, D., Kitaev, A. & Preskill, J. Fault-tolerant quantum computation with long-range correlated noise. Phys. Rev. Lett. 96, 050504 (2006)

    Article  ADS  Google Scholar 

  7. Stamp, P. C. E. & Tupitsyn, I. S. Coherence window in the dynamics of quantum nanomagnets. Phys. Rev. B 69, 014401 (2004)

    Article  ADS  Google Scholar 

  8. Morello, A., Stamp, P. C. E. & Tupitsyn, I. S. Pairwise decoherence in coupled spin qubit networks. Phys. Rev. Lett. 97, 207206 (2006)

    Article  ADS  Google Scholar 

  9. Prokof’ev, N. V. & Stamp, P. C. E. Theory of the spin bath. Rep. Prog. Phys. 63, 669–726 (2000)

    Article  ADS  Google Scholar 

  10. Rabi, I. I. Space quantization in a gyrating magnetic field. Phys. Rev. 51, 652–654 (1937)

    Article  ADS  CAS  Google Scholar 

  11. Müller, A. & Döring, J. A novel heterocluster with D 3-symmetry containing twenty-one core atoms: [AsIII 6VIV 15O42(H2O)]6- . Angew. Chem. Int. Edn Engl. 27, 1721 (1988)

    Article  Google Scholar 

  12. Gatteschi, D., Pardi, L., Barra, A. L., Müller, A. & Döring, J. Layered magnetic structure of a metal cluster ion. Nature 354, 463–465 (1991)

    Article  ADS  CAS  Google Scholar 

  13. Barbara, B. On the richness of supra-molecular chemistry and its openings in physics. J. Mol. Struct. 656, 135–140 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Wernsdorfer, W., Müller, A., Mailly, D. & Barbara, B. Resonant photon absorption in the low spin molecule V15 . Europhys. Lett. 66, 861–867 (2004)

    Article  ADS  CAS  Google Scholar 

  15. Ardavan, A. et al. Will spin-relaxation times in molecular magnets permit quantum information processing? Phys. Rev. Lett. 98, 057201 (2007)

    Article  ADS  Google Scholar 

  16. Wernsdorfer, W. A long-lasting phase. Nature Mater. 6, 174–176 (2007)

    Article  ADS  CAS  Google Scholar 

  17. Mehring, M., Mende, J. & Scherer, W. Entanglement between an electron and a nuclear spin ½. Phys. Rev. Lett. 90, 153001 (2003)

    Article  ADS  CAS  Google Scholar 

  18. Morton, J. J. L. et al. Bang–bang control of fullerene qubits using ultrafast phase gates. Nature Phys. 2, 40–43 (2006)

    Article  ADS  CAS  Google Scholar 

  19. Bertaina, S. et al. Rare earth solid state qubits. Nature Nanotechnol. 2, 39–42 (2007)

    Article  ADS  CAS  Google Scholar 

  20. Nellutla, S. et al. Coherent manipulation of electron spins up to ambient temperatures in Cr5+ (S = 1/2) doped K3NbO8 . Phys. Rev. Lett. 99, 137601 (2007)

    Article  ADS  CAS  Google Scholar 

  21. Chiorescu, I., Wernsdorfer, W., Müller, A., Bögge, H. & Barbara, B. Butterfly hysteresis loop and dissipative spin reversal in the S = 1/2, V15 molecular complex. Phys. Rev. Lett. 84, 3454–3457 (2000)

    Article  ADS  CAS  Google Scholar 

  22. De Raedt, H. D., Miyashita, S., Michielsen, K. & Machida, M. Dzyaloshinskii-Moriya interactions and adiabatic magnetization dynamics in molecular magnets. Phys. Rev. B 70, 064401 (2004)

    Article  ADS  Google Scholar 

  23. Chaboussant, G. et al. Mechanism of ground-state selection in the frustrated molecular spin cluster V15 . Europhys. Lett. 66, 423–429 (2004)

    Article  ADS  CAS  Google Scholar 

  24. Tarantul, A., Tsukerblat, B. & Müller, A. Static magnetization of V15 cluster at ultra-low temperatures: Precise estimation of antisymmetric exchange. Inorg. Chem. 46, 161–169 (2007)

    Article  CAS  Google Scholar 

  25. Tsukerblat, B., Tarantul, A. & Müller, A. Low temperature EPR spectra of the mesoscopic cluster V15: The role of antisymmetric exchange. J. Chem. Phys. 125, 054714 (2006)

    Article  ADS  Google Scholar 

  26. Dzyaloshinsky, I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958)

    Article  ADS  CAS  Google Scholar 

  27. Moriya, T. Anisotropic superexchange interactions and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960)

    Article  ADS  CAS  Google Scholar 

  28. Volkmer, D. et al. Towards nanodevices: Synthesis and characterization of the nanoporous surfactant-encapsulated keplerate (DODA)40(NH4)2[(H2O) n Mo132O372(CH3COO)30(H2O)72]. J. Am. Chem. Soc. 122, 1995–1998 (2000)

    Article  CAS  Google Scholar 

  29. Prokof'ev, N. V. & Stamp, P. C. E. Quantum relaxation of magnetisation in magnetic particles. J. Low Temp. Phys. 104, 143–210 (1996)

    Article  ADS  CAS  Google Scholar 

  30. Hartmann-Boutron, F., Politi, P. & Villain, J. Tunneling and magnetic relaxation in mesoscopic molecules. Int. J. Mod. Phys. B 10, 2577–2637 (1996)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge I. Chiorescu from NHMFL-FSU, Tallahassee, USA, for discussions. We thank M.-N. Collomb for help in processing samples for EPR measurements, and G. Desfonds for technical support. B.B. and A.M. thank the European Research Council for support through network projects MAGMANet, MolNanoMag, QueMolNa and INTAS; A.M. thanks the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for support; and B.T. and A.M. thank the German–Israeli Foundation for Scientific Research and Development for support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Müller or B. Barbara.

Supplementary information

Supplementary Notes

The file contains Supplementary Notes. (PDF 97 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertaina, S., Gambarelli, S., Mitra, T. et al. Quantum oscillations in a molecular magnet. Nature 453, 203–206 (2008). https://doi.org/10.1038/nature06962

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06962

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing