Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Understanding individual human mobility patterns

An Addendum to this article was published on 12 March 2009


Despite their importance for urban planning1, traffic forecasting2 and the spread of biological3,4,5 and mobile viruses6, our understanding of the basic laws governing human motion remains limited owing to the lack of tools to monitor the time-resolved location of individuals. Here we study the trajectory of 100,000 anonymized mobile phone users whose position is tracked for a six-month period. We find that, in contrast with the random trajectories predicted by the prevailing Lévy flight and random walk models7, human trajectories show a high degree of temporal and spatial regularity, each individual being characterized by a time-independent characteristic travel distance and a significant probability to return to a few highly frequented locations. After correcting for differences in travel distances and the inherent anisotropy of each trajectory, the individual travel patterns collapse into a single spatial probability distribution, indicating that, despite the diversity of their travel history, humans follow simple reproducible patterns. This inherent similarity in travel patterns could impact all phenomena driven by human mobility, from epidemic prevention to emergency response, urban planning and agent-based modelling.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Basic human mobility patterns.
Figure 2: The bounded nature of human trajectories.
Figure 3: The shape of human trajectories.


  1. Horner, M. W. & O’Kelly, M. E. S Embedding economies of scale concepts for hub networks design. J. Transp. Geogr. 9, 255–265 (2001)

    Article  Google Scholar 

  2. Kitamura, R., Chen, C., Pendyala, R. M. & Narayaran, R. Micro-simulation of daily activity-travel patterns for travel demand forecasting. Transportation 27, 25–51 (2000)

    Article  Google Scholar 

  3. Colizza, V., Barrat, A., Barthélémy, M., Valleron, A.-J. & Vespignani, A. Modeling the worldwide spread of pandemic influenza: baseline case and containment interventions. PLoS Medicine 4, 95–110 (2007)

    Article  Google Scholar 

  4. Eubank, S. et al. Controlling epidemics in realistic urban social networks. Nature 429, 180–184 (2004)

    Article  ADS  CAS  Google Scholar 

  5. Hufnagel, L., Brockmann, D. & Geisel, T. Forecast and control of epidemics in a globalized world. Proc. Natl Acad. Sci. USA 101, 15124–15129 (2004)

    Article  ADS  CAS  Google Scholar 

  6. Kleinberg, J. The wireless epidemic. Nature 449, 287–288 (2007)

    Article  ADS  CAS  Google Scholar 

  7. Brockmann, D. D., Hufnagel, L. & Geisel, T. The scaling laws of human travel. Nature 439, 462–465 (2006)

    Article  ADS  CAS  Google Scholar 

  8. Havlin, S. & Ben-Avraham, D. Diffusion in disordered media. Adv. Phys. 51, 187–292 (2002)

    Article  ADS  CAS  Google Scholar 

  9. Viswanathan, G. M. et al. Lévy flight search patterns of wandering albatrosses. Nature 381, 413–415 (1996)

    Article  ADS  CAS  Google Scholar 

  10. Ramos-Fernandez, G. et al. Lévy walk patterns in the foraging movements of spider monkeys (Ateles geoffroyi). Behav. Ecol. Sociobiol. 273, 1743–1750 (2004)

    Google Scholar 

  11. Sims, D. W. et al. Scaling laws of marine predator search behaviour. Nature 451, 1098–1102 (2008)

    Article  ADS  CAS  Google Scholar 

  12. Klafter, J., Shlesinger, M. F. & Zumofen, G. Beyond brownian motion. Phys. Today 49, 33–39 (1996)

    Article  Google Scholar 

  13. Mantegna, R. N. & Stanley, H. E. Stochastic process with ultraslow convergence to a gaussian: the truncated Lévy flight. Phys. Rev. Lett. 73, 2946–2949 (1994)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  14. Edwards, A. M. et al. Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer. Nature 449, 1044–1049 (2007)

    Article  ADS  CAS  Google Scholar 

  15. Sohn, T. et al. in Proc. 8th Int. Conf. UbiComp 2006 212–224 (Springer, Berlin, 2006)

    Google Scholar 

  16. Onnela, J.-P. et al. Structure and tie strengths in mobile communication networks. Proc. Natl Acad. Sci. USA 104, 7332–7336 (2007)

    Article  ADS  CAS  Google Scholar 

  17. González, M. C. & Barabási, A.-L. Complex networks: from data to models. Nature Physics 3, 224–225 (2007)

    Article  ADS  Google Scholar 

  18. Palla, G., Barabási, A.-L. & Vicsek, T. Quantifying social group evolution. Nature 446, 664–667 (2007)

    Article  ADS  CAS  Google Scholar 

  19. Hidalgo, C. A. & Rodriguez-Sickert, C. The dynamics of a mobile phone network. Physica A 387, 3017–3024 (2008)

    Article  ADS  Google Scholar 

  20. Barabási, A.-L. The origin of bursts and heavy tails in human dynamics. Nature 435, 207–211 (2005)

    Article  ADS  Google Scholar 

  21. Redner, S. A Guide to First-Passage Processes (Cambridge Univ. Press, Cambridge, UK, 2001)

    Book  Google Scholar 

  22. Condamin, S., Bénichou, O., Tejedor, V. & Klafter, J. First-passage times in complex scale-invariant media. Nature 450, 77–80 (2007)

    Article  ADS  CAS  Google Scholar 

  23. Schlich, R. & Axhausen, K. W. Habitual travel behaviour: evidence from a six-week travel diary. Transportation 30, 13–36 (2003)

    Article  Google Scholar 

  24. Eagle, N. & Pentland, A. Eigenbehaviours: identifying structure in routine. Behav. Ecol. Sociobiol. (in the press)

  25. Yook, S.-H., Jeong, H. & Barabási, A. L. Modeling the Internet’s large-scale topology. Proc. Natl Acad. Sci. USA 99, 13382–13386 (2002)

    Article  ADS  CAS  Google Scholar 

  26. Caldarelli, G. Scale-Free Networks: Complex Webs in Nature and Technology. (Oxford Univ. Press, New York, 2007)

    Book  Google Scholar 

  27. Dorogovtsev, S. N. & Mendes, J. F. F. Evolution of Networks: From Biological Nets to the Internet and WWW. (Oxford Univ. Press, New York, 2003)

    Book  Google Scholar 

  28. Song, C. M., Havlin, S. & Makse, H. A. Self-similarity of complex networks. Nature 433, 392–395 (2005)

    Article  ADS  CAS  Google Scholar 

  29. González, M. C., Lind, P. G. & Herrmann, H. J. A system of mobile agents to model social networks. Phys. Rev. Lett. 96, 088702 (2006)

    Article  ADS  Google Scholar 

  30. Cecconi, F., Marsili, M., Banavar, J. R. & Maritan, A. Diffusion, peer pressure, and tailed distributions. Phys. Rev. Lett. 89, 088102 (2002)

    Article  ADS  Google Scholar 

Download references


We thank D. Brockmann, T. Geisel, J. Park, S. Redner, Z. Toroczkai, A. Vespignani and P. Wang for discussions and comments on the manuscript. This work was supported by the James S. McDonnell Foundation 21st Century Initiative in Studying Complex Systems, the National Science Foundation within the DDDAS (CNS-0540348), ITR (DMR-0426737) and IIS-0513650 programs, and the US Office of Naval Research Award N00014-07-C. Data analysis was performed on the Notre Dame Biocomplexity Cluster supported in part by the NSF MRI grant number DBI-0420980. C.A.H. acknowledges support from the Kellogg Institute at Notre Dame.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Albert-László Barabási.

Supplementary information

Supplementary information

The file contains Supplementary Data with Supplementary Figures S1-S9 and additional references. (PDF 1065 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

González, M., Hidalgo, C. & Barabási, AL. Understanding individual human mobility patterns. Nature 453, 779–782 (2008).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing