Letter | Published:

Gelation of particles with short-range attraction

Nature volume 453, pages 499503 (22 May 2008) | Download Citation


Nanoscale or colloidal particles are important in many realms of science and technology. They can dramatically change the properties of materials, imparting solid-like behaviour to a wide variety of complex fluids1,2. This behaviour arises when particles aggregate to form mesoscopic clusters and networks. The essential component leading to aggregation is an interparticle attraction, which can be generated by many physical and chemical mechanisms. In the limit of irreversible aggregation, infinitely strong interparticle bonds lead to diffusion-limited cluster aggregation3 (DLCA). This is understood as a purely kinetic phenomenon that can form solid-like gels at arbitrarily low particle volume fraction4,5. Far more important technologically are systems with weaker attractions, where gel formation requires higher volume fractions. Numerous scenarios for gelation have been proposed, including DLCA6, kinetic or dynamic arrest4,7,8,9,10, phase separation5,6,11,12,13,14,15,16, percolation4,12,17,18 and jamming8. No consensus has emerged and, despite its ubiquity and significance, gelation is far from understood—even the location of the gelation phase boundary is not agreed on5. Here we report experiments showing that gelation of spherical particles with isotropic, short-range attractions is initiated by spinodal decomposition; this thermodynamic instability triggers the formation of density fluctuations, leading to spanning clusters that dynamically arrest to create a gel. This simple picture of gelation does not depend on microscopic system-specific details, and should thus apply broadly to any particle system with short-range attractions. Our results suggest that gelation—often considered a purely kinetic phenomenon4,8,9,10—is in fact a direct consequence of equilibrium liquid–gas phase separation5,13,14,15. Without exception, we observe gelation in all of our samples predicted by theory and simulation to phase-separate; this suggests that it is phase separation, not percolation12, that corresponds to gelation in models for attractive spheres.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    , , & Understanding foods as soft materials. Nature Mater. 4, 729–740 (2005)

  2. 2.

    , & Ceramic forming using enzyme catalyzed reactions. Mater. Chem. Phys. 61, 78–102 (1999)

  3. 3.

    et al. Universality in colloid aggregation. Nature 339, 360–362 (1989)

  4. 4.

    , & Cluster mode-coupling approach to weak gelation in attractive colloids. Phys. Rev. Lett. 92, 148302 (2004)

  5. 5.

    Colloidal gels: Equilibrium and non-equilibrium routes. J. Phys. Condens. Matter 19, 323101 (2007)

  6. 6.

    , , & Direct observation of crystallization and aggregation in a phase-separating colloid-polymer suspension. Phys. Rev. E 64, 021407 (2001)

  7. 7.

    , , & Interplay between spinodal decomposition and glass formation in proteins exhibiting short-range attractions. Phys. Rev. Lett. 99, 118301 (2007)

  8. 8.

    , , , & Jamming phase diagram for attractive particles. Nature 411, 772–775 (2001)

  9. 9.

    , & Gelation in model colloid-polymer mixtures. Langmuir 19, 4493–4503 (2003)

  10. 10.

    , & Competition between glass transition and liquid-gas phase separation in attracting colloids. J. Phys. Condens. Matter 19, 205140 (2007)

  11. 11.

    , & Dynamics of colloid-polymer mixtures. Physica A 201, 322–331 (1993)

  12. 12.

    & Mesoscopic structure formation in colloidal aggregation and gelation. Adv. Colloid Interface Sci. 73, 71–126 (1997)

  13. 13.

    , , & Scaling of dynamics with the range of interaction in short-range attractive colloids. Phys. Rev. Lett. 94, 078301 (2005)

  14. 14.

    & Systematic characterization of thermodynamic and dynamical phase behavior in systems with short-ranged attraction. Phys. Rev. E 75, 011507 (2007)

  15. 15.

    , & “Sticky” hard spheres: Equation of state, phase diagram, and metastable gels. Phys. Rev. Lett. 99, 098301 (2007)

  16. 16.

    , & Network-forming phase separation of colloidal suspensions. J. Phys. Condens. Matter 17, L143–L153 (2005)

  17. 17.

    & Phase diagram of a model adhesive hard-sphere dispersion. J. Colloid Interface Sci. 172, 425–437 (1995)

  18. 18.

    & Volume-fraction dependence of elastic moduli and transition temperatures for colloidal silica gels. Phys. Rev. E 47, 2606–2614 (1993)

  19. 19.

    & Spinodal-type dynamics in fractal aggregation of colloidal clusters. Phys. Rev. Lett. 68, 3327–3330 (1992)

  20. 20.

    , , & Fractal colloidal aggregates with finite interparticle interactions: Energy dependence of the fractal dimension. Phys. Rev. A 41, 3206–3213 (1990)

  21. 21.

    , & Aggregation and sedimentation in colloidal suspensions. Phys. Rev. Lett. 74, 1478–1481 (1995)

  22. 22.

    , , , & Fluids of clusters in attractive colloids. Phys. Rev. Lett. 96, 028306 (2006)

  23. 23.

    , , & Phase behavior and concentration fluctuations in suspensions of hard spheres and nearly ideal polymers. J. Chem. Phys. 118, 3350–3361 (2003)

  24. 24.

    , , , & Target-locking acquisition with real-time confocal (TARC) microscopy. Opt. Express 15, 8702–8712 (2007)

  25. 25.

    & Extended corresponding-states behavior for particles with variable range attractions. J. Chem. Phys. 113, 2941–2944 (2000)

  26. 26.

    , & Influence of polymer-excluded volume on the phase-behavior of colloid-polymer mixtures. Phys. Rev. Lett. 89, 128302 (2002)

  27. 27.

    , & Measuring colloidal interactions with confocal microscopy. J. Chem. Phys. 127, 044507 (2007)

  28. 28.

    & Competition of percolation and phase separation in a fluid of adhesive hard spheres. Phys. Rev. Lett. 90, 135702 (2003)

  29. 29.

    & Structure factor scaling during irreversible cluster-cluster aggregation. Phys. Rev. Lett. 74, 282–285 (1995)

  30. 30.

    A dynamic scaling assumption for phase separation. Adv. Phys. 34, 703–750 (1985)

  31. 31.

    Revisiting the method of cumulants for the analysis of dynamic light-scattering data. Appl. Opt. 40, 4087–4091 (2001)

  32. 32.

    , , , & Phase behavior of colloid+polymer mixtures. Europhys. Lett. 20, 559–564 (1992)

  33. 33.

    & On interaction between two bodies immersed in a solution of macromolecules. J. Chem. Phys. 22, 1255–1256 (1954)

  34. 34.

    , & Strong weak and metastable liquids structural and dynamical aspects of the liquid state. Physica A 263, 378–388 (1999)

  35. 35.

    & Computer Simulation of Liquids (Oxford Univ. Press, Oxford, UK, 1989)

  36. 36.

    The Art of Molecular Dynamic Simulation (Cambridge Univ. Press, Cambridge, UK, 1995)

Download references


P.J.L. thanks D. Maas, M. Christiansen and S. Raghavachary for assistance in producing the renderings and movies. This work was supported by NASA, the NSF, the Harvard MRSEC, MIUR-Prin and the Marie Curie Research and Training Network on Dynamical Arrested States of Soft Matter and Colloids.

Author information


  1. Department of Physics,

    • Peter J. Lu
    •  & David A. Weitz
  2. SEAS, Harvard University, Cambridge, Massachusetts 02138, USA

    • David A. Weitz
  3. Dipartimento di Fisica,

    • Emanuela Zaccarelli
    • , Fabio Ciulla
    •  & Francesco Sciortino
  4. CNR-INFM-SOFT, Università di Roma La Sapienza, Piazzale A. Moro 2, 00185 Roma, Italy

    • Emanuela Zaccarelli
    •  & Francesco Sciortino
  5. The School of Physics, University of Edinburgh, Edinburgh EH9 3JZ, UK

    • Andrew B. Schofield


  1. Search for Peter J. Lu in:

  2. Search for Emanuela Zaccarelli in:

  3. Search for Fabio Ciulla in:

  4. Search for Andrew B. Schofield in:

  5. Search for Francesco Sciortino in:

  6. Search for David A. Weitz in:

Corresponding author

Correspondence to Peter J. Lu.

Supplementary information


  1. 1.

    The file contains Supplementary Movie 1.

    Three dimensional reconstruction (56x56x56μm3) of a typical fluid phase sample, here with ø=0.045, ξ=0.059, and cp=3.20 mg/mL, also illustrated in Fig. 1c. The structure is a snapshot of a single configuration in time, in the long-time steady-state limit, rotating to demonstrate that the clusters are small (fewer than fifty particles) and do not span the sample. The fluid’s clusters are colored by their mass s (number of particles) according to the color bar, with monomers and dimers rendered in transparent grey.

  2. 2.

    The file contains Supplementary Movie 2.

    Early-time evolution of a gel sample with ø=0.045, ξ=0.059 and cp=3.31 mg/mL, also illustrated in Fig. 1d. Time elapsed after mixing indicated by the counter in the upper left. Three-dimensional reconstruction (56x56x56μm3) shown at left, with a two-dimensional confocal microscope image at upper right. The static structure factor S(q) is shown as a function of scattering vector q at lower right. Clusters are colored by their mass, as in Figs. 1c-d and Supplementary Video 1. After mixing, the sample undergoes spinodal decomposition. Clusters in the sample grow, manifest in S(q) as the growth and narrowing of a peak, which moves to lower q as a function of time. After two hours, all clusters have merged into a single spanning cluster that arrests, forming a gel. The peak in S(q) no longer evolves, and while the spanning cluster fluctuates thermally and exchanges monomers with a sparse colloidal gas phase, no significant structural arrangements occur.

  3. 3.

    The file contains Supplementary Movie 3.

    Long-time evolution of the gel sample at ø=0.045 and ξ=0.059 and cp=3.31 mg/mL, also illustrated in Fig. 1d and Supplementary Video 2. Time elapsed after mixing indicated by the counter in the upper left. Three-dimensional reconstruction (56x56x56μm3) shown at left, with two-dimensional confocal microscope image at upper right. The gel is in the steady state: the structure remains essentially unchanged throughout the entire 100,000 second observation period, even as the spanning cluster exchanges monomers with the surrounding dilute colloidal gas. This exchange is highlighted in the lower right-hand panel: new gel particles that appear for the first time in a frame are highlighted in green, indicating condensation onto the gel from the gas; monomers that disappear in the subsequent frame are highlighted in red, indicating evaporation from the spanning cluster into the gas phase.

About this article

Publication history






Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.