Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Proteasome subunit Rpn13 is a novel ubiquitin receptor

Abstract

Proteasomal receptors that recognize ubiquitin chains attached to substrates are key mediators of selective protein degradation in eukaryotes. Here we report the identification of a new ubiquitin receptor, Rpn13/ARM1, a known component of the proteasome. Rpn13 binds ubiquitin through a conserved amino-terminal region termed the pleckstrin-like receptor for ubiquitin (Pru) domain, which binds K48-linked diubiquitin with an affinity of approximately 90 nM. Like proteasomal ubiquitin receptor Rpn10/S5a, Rpn13 also binds ubiquitin-like (UBL) domains of UBL-ubiquitin-associated (UBA) proteins. In yeast, a synthetic phenotype results when specific mutations of the ubiquitin binding sites of Rpn10 and Rpn13 are combined, indicating functional linkage between these ubiquitin receptors. Because Rpn13 is also the proteasomal receptor for Uch37, a deubiquitinating enzyme, our findings suggest a coupling of chain recognition and disassembly at the proteasome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Murine Rpn13 binds ubiquitin chains.
Figure 2: Rpn13 contributes to recognition of ubiquitin conjugates by the proteasome.
Figure 3: Rpn13 uses loops to bind ubiquitin.
Figure 4: Rpn13 binds to ubiquitin and UBLs of proteasomal receptors.
Figure 5: An Rpn13 mutant specifically defective in ubiquitin chain binding.
Figure 6: Phenotypic effects of the loss of ubiquitin receptor function by Rpn13.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

The structures of full-length scRpn13 are deposited in Protein Data Bank under accession number 2Z4D.

References

  1. Voges, D., Zwickl, P. & Baumeister, W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 68, 1015–1068 (1999)

    Article  CAS  PubMed  Google Scholar 

  2. Deveraux, Q., Ustrell, V., Pickart, C. & Rechsteiner, M. A 26 S protease subunit that binds ubiquitin conjugates. J. Biol. Chem. 269, 7059–7061 (1994)

    CAS  PubMed  Google Scholar 

  3. Elsasser, S. & Finley, D. Delivery of ubiquitinated substrates to protein-unfolding machines. Nature Cell Biol. 7, 742–749 (2005)

    Article  CAS  PubMed  Google Scholar 

  4. Madura, K. Rad23 and Rpn10: perennial wallflowers join the melee. Trends Biochem. Sci. 29, 637–640 (2004)

    Article  CAS  PubMed  Google Scholar 

  5. Elsasser, S., Chandler-Militello, D., Muller, B., Hanna, J. & Finley, D. Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome. J. Biol. Chem. 279, 26817–26822 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. Verma, R., Oania, R., Graumann, J. & Deshaies, R. J. Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell 118, 99–110 (2004)

    Article  CAS  PubMed  Google Scholar 

  7. Kleijnen, M. F. et al. The hPLIC proteins may provide a link between the ubiquitination machinery and the proteasome. Mol. Cell 6, 409–419 (2000)

    Article  CAS  PubMed  Google Scholar 

  8. Chen, L. & Madura, K. Rad23 promotes the targeting of proteolytic substrates to the proteasome. Mol. Cell. Biol. 22, 4902–4913 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kaplun, L. et al. The DNA damage-inducible UbL–UbA protein Ddi1 participates in Mec1-mediated degradation of Ho endonuclease. Mol. Cell. Biol. 25, 5355–5362 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bertolaet, B. L. et al. UBA domains of DNA damage-inducible proteins interact with ubiquitin. Nature Struct. Biol. 8, 417–422 (2001)

    Article  CAS  PubMed  Google Scholar 

  11. Wilkinson, C. R. et al. Proteins containing the UBA domain are able to bind to multi-ubiquitin chains. Nature Cell Biol. 3, 939–943 (2001)

    Article  CAS  PubMed  Google Scholar 

  12. Wang, Q., Goh, A. M., Howley, P. M. & Walters, K. J. Ubiquitin recognition by the DNA repair protein hHR23a. Biochemistry 42, 13529–13535 (2003)

    Article  CAS  PubMed  Google Scholar 

  13. Hiyama, H. et al. Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26 S proteasome. J. Biol. Chem. 274, 28019–28025 (1999)

    Article  CAS  PubMed  Google Scholar 

  14. Elsasser, S. et al. Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nature Cell Biol. 4, 725–730 (2002)

    Article  CAS  PubMed  Google Scholar 

  15. Walters, K. J., Kleijnen, M. F., Goh, A. M., Wagner, G. & Howley, P. M. Structural studies of the interaction between ubiquitin family proteins and proteasome subunit S5a. Biochemistry 41, 1767–1777 (2002)

    Article  CAS  PubMed  Google Scholar 

  16. Verma, R. et al. Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell 11, 3425–3439 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sone, T., Saeki, Y., Toh-e, A. & Yokosawa, H. Sem1p is a novel subunit of the 26 S proteasome from Saccharomyces cerevisiae . J. Biol. Chem. 279, 28807–28816 (2004)

    Article  CAS  PubMed  Google Scholar 

  18. Hamazaki, J. et al. A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes. EMBO J. 25, 4524–4536 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jorgensen, J. P. et al. Adrm1, a putative cell adhesion regulating protein, is a novel proteasome-associated factor. J. Mol. Biol. 360, 1043–1052 (2006)

    Article  CAS  PubMed  Google Scholar 

  20. Qiu, X. B. et al. hRpn13/ADRM1/GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, UCH37. EMBO J. 25, 5742–5753 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yao, T. et al. Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nature Cell Biol. 8, 994–1002 (2006)

    Article  CAS  PubMed  Google Scholar 

  22. Ito, T. et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl Acad. Sci. USA 98, 4569–4574 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gandhi, T. K. et al. Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nature Genet. 38, 285–293 (2006)

    Article  CAS  PubMed  Google Scholar 

  24. Lam, Y. A., Xu, W., DeMartino, G. N. & Cohen, R. E. Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature 385, 737–740 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Bienko, M. et al. Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 310, 1821–1824 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Seong, K. M., Baek, J. H., Yu, M. H. & Kim, J. Rpn13p and Rpn14p are involved in the recognition of ubiquitinated Gcn4p by the 26S proteasome. FEBS Lett. 581, 2567–2573 (2007)

    Article  CAS  PubMed  Google Scholar 

  27. Schreiner, P. et al. Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature 10.1038/nature06924 (this issue)

  28. Raasi, S., Orlov, I., Fleming, K. G. & Pickart, C. M. Binding of polyubiquitin chains to ubiquitin-associated (UBA) domains of HHR23A. J. Mol. Biol. 341, 1367–1379 (2004)

    Article  CAS  PubMed  Google Scholar 

  29. Glickman, M. H. et al. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94, 615–623 (1998)

    Article  CAS  PubMed  Google Scholar 

  30. Johnson, E. S., Bartel, B., Seufert, W. & Varshavsky, A. Ubiquitin as a degradation signal. EMBO J. 11, 497–505 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schmidt, M., Hanna, J., Elsasser, S. & Finley, D. Proteasome-associated proteins: regulation of a proteolytic machine. Biol. Chem. 386, 725–737 (2005)

    Article  CAS  PubMed  Google Scholar 

  32. Saeki, Y., Saitoh, A., Toh-e, A. & Yokosawa, H. Ubiquitin-like proteins and Rpn10 play cooperative roles in ubiquitin-dependent proteolysis. Biochem. Biophys. Res. Commun. 293, 986–992 (2002)

    Article  CAS  PubMed  Google Scholar 

  33. Raasi, S. & Pickart, C. M. Rad23 ubiquitin-associated domains (UBA) inhibit 26 S proteasome-catalyzed proteolysis by sequestering lysine 48-linked polyubiquitin chains. J. Biol. Chem. 278, 8951–8959 (2003)

    Article  CAS  PubMed  Google Scholar 

  34. Guterman, A. & Glickman, M. H. Complementary roles for Rpn11 and Ubp6 in deubiquitination and proteolysis by the proteasome. J. Biol. Chem. 279, 1729–1738 (2004)

    Article  CAS  PubMed  Google Scholar 

  35. Boutet, S. C., Disatnik, M. H., Chan, L. S., Iori, K. & Rando, T. A. Regulation of pax3 by proteasomal degradation of monoubiquitinated protein in skeletal muscle progenitors. Cell 130, 349–362 (2007)

    Article  CAS  PubMed  Google Scholar 

  36. Soubeyran, P., Kowanetz, K., Szymkiewicz, I., Langdon, W. Y. & Dikic, I. Cbl-CIN85-endophilin complex mediates ligand-induced downregulation of EGF receptors. Nature 416, 183–187 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Leggett, D. S. et al. Multiple associated proteins regulate proteasome structure and function. Mol. Cell 10, 495–507 (2002)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of our laboratories, as well as D. Hoeller, G. Dittmar, J. Lipscomb and M. Schmidt, for discussions, comments and reading of the manuscript. We also thank the University of Minnesota’s NMR facility, Minnesota Supercomputing Institutes’s Basic Sciences Computing Laboratory and E. Arriaga for allowing us to use his spectrofluorometer. We thank G. Zapart for the initial Y2H ubiquitin screening, and M. Groll and P. Schneider for allowing us to use the mRpn13–ubiquitin coordinates to generate Fig. 5c. This work was supported by grants from Deutsche Forschungsgemeinschaft (DI 931/3-1), the Cluster of Excellence ‘Macromolecular Complexes’ of the Goethe University Frankfurt (EXC115) (I.D.) and the National Institutes of Health (CA097004 to K.J.W.; GM043601 to D.F.; GM008700-CBITG to L.R.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kylie J. Walters, Daniel Finley or Ivan Dikic.

Supplementary information

Supplementary information

The file contains Supplementary Methods and Supplementary Figures 1-7 with Legends. (PDF 767 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Husnjak, K., Elsasser, S., Zhang, N. et al. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453, 481–488 (2008). https://doi.org/10.1038/nature06926

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06926

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing