Phase-slip-induced dissipation in an atomic Bose–Hubbard system

Abstract

Phase-slips control dissipation in many bosonic systems, determining the critical velocity of superfluid helium1 and the generation of resistance in thin superconducting wires2. Technological interest has been largely motivated by applications involving nanoscale superconducting circuit elements, such as standards based on quantum phase-slip junctions3. Although phase slips caused by thermal fluctuations at high temperatures are well understood4, controversy remains over the role of phase slips in small-scale superconductors5—in solids, problems such as uncontrolled noise sources and disorder complicate their study and application6. Here we show that phase slips can lead to dissipation in a clean and well-characterized Bose–Hubbard system, by experimentally studying the transport of ultracold atoms trapped in an optical lattice. In contrast to previous work, we explore a low-velocity regime described by the three-dimensional Bose–Hubbard model that is unaffected by instabilities, and we measure the effect of temperature on the dissipation strength. The damping rate of atomic motion (the analogue of electrical resistance in a solid) in the confining parabolic potential is well fitted by a model that includes finite damping at zero temperature. The low-temperature behaviour is consistent with the theory of quantum tunnelling of phase slips, whereas at higher temperatures a crossover consistent with a transition to thermal activation of phase slips is evident. Motion-induced features reminiscent of vortices and vortex rings associated with phase slips are also observed in time-of-flight imaging. These results clarify the role of phase slips in superfluid systems. They may also be of relevance in understanding the source of metallic phases observed in thin films7,8, or serve as a test bed for theories of bosonic dissipation based upon variants of the Bose–Hubbard model9.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental apparatus and experimental sequence.
Figure 2: Representative data used to measure the damping rate γ.
Figure 3: Temperature dependence of the damping rate γ.
Figure 4: Scaling of γ with .

References

  1. 1

    Langer, J. S. & Fisher, M. E. Intrinsic critical velocity of a superfluid. Phys. Rev. Lett. 19, 560–563 (1967)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Langer, J. S. & Ambergaokar, V. Instrinsic resistive transition in narrow superconducting channels. Phys. Rev. 164, 498–510 (1967)

    ADS  Article  Google Scholar 

  3. 3

    Mooij, J. E. & Nazarov, Y. V. Superconducting nanowires as quantum phase-slip junctions. Nature Phys. 2, 169–172 (2006)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Tinkham, M. Introduction to Superconductivity 2nd edn, Ch. 8 (McGraw Hill, New York, 1996)

    Google Scholar 

  5. 5

    Bezryadin, A., Lau, C. N. & Tinkham, M. Quantum suppression of superconductivity in ultrathin nanowires. Nature 404, 971–974 (2000)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Bollinger, A. T., Rogachev, A. & Bezryadin, A. Dichotomy in short superconducting nanowires: Thermal phase slippage vs. Coulomb blockade. Europhys. Lett. 76, 505–511 (2006)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Goldman, A. M. Superconductor-insulator transitions in the two-dimensional limit. Physica E 18, 1–6 (2003)

    ADS  Article  Google Scholar 

  8. 8

    Phillips, P. & Dalidovich, D. The elusive Bose metal. Science 302, 243–247 (2003)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Fisher, M. P., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546–570 (1989)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Greiner, M. et al. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Jaksch, D. et al. Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Cataliotti, F. S. et al. Josephson junction arrays with Bose-Einstein condensates. Science 293, 843–846 (2001)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Henderson, K. et al. Experimental study of the role of atomic interactions on quantum transport. Phys. Rev. Lett. 96, 150401 (2006)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Fertig, C. D. et al. Strongly inhibited transport of a degenerate 1D Bose gas in a lattice. Phys. Rev. Lett. 94, 120403 (2005)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Cristiani, M. et al. Experimental properties of Bose-Einstein condensates in one-dimensional optical lattices: Bloch oscillations, Landau-Zener tunneling, and mean-field effects. Phys. Rev. A 65, 063612 (2002)

    ADS  Article  Google Scholar 

  16. 16

    Mun, J. et al. Phase diagram for a Bose-Einstein condensate moving in an optical lattice. Phys. Rev. Lett. 99, 150604 (2007)

    ADS  Article  Google Scholar 

  17. 17

    DeSarlo, L. et al. Unstable regimes for a Bose-Einstein condensate in an optical lattice. Phys. Rev. A 72, 013603 (2005)

    ADS  Article  Google Scholar 

  18. 18

    Fallani, L. et al. Observation of dynamical instability for a Bose-Einstein condensate in a moving 1D optical lattice. Phys. Rev. Lett. 93, 140406 (2004)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Cristiani, M. et al. Instabilities of a Bose-Einstein condensate in a periodic potential: an experimental investigation. Opt. Express 12, 4–10 (2004)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Wu, B. & Niu, Q. Superfluidity of Bose–Einstein condensate in an optical lattice: Landau–Zener tunnelling and dynamical instability. N. J. Phys. 5, 104.1–104.24 (2003)

    Article  Google Scholar 

  21. 21

    Polkovnikov, A. et al. Decay of a superfluid currents in a moving system of strongly interacting bosons. Phys. Rev. A 71, 063613 (2005)

    ADS  Article  Google Scholar 

  22. 22

    White, M., Gao, H., Pasienski, M. & DeMarco, B. Bose-Einstein condensates in rf-dressed adiabatic potentials. Phys. Rev. A 74, 023616 (2006)

    ADS  Article  Google Scholar 

  23. 23

    Vinen, W. F. Mutual friction in a heat current in liquid helium II. III. Theory of the mutual friction. Proc. R. Soc. Lond. A 242, 493–515 (1957)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Stamper-Kurn, D. M. et al. Collisionless and hydrodynamic excitations of a Bose-Einstein condensate. Phys. Rev. Lett. 81, 500–503 (1998)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Haljan, P. C., Coddington, I., Engels, P. & Cornell, E. A. Driving Bose-Einstein-condensate vorticity with a rotating normal cloud. Phys. Rev. Lett. 87, 210403 (2001)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Ferlaino, F. et al. Dynamics of a Bose-Einstein condensate at finite temperature in an atom-optical coherence filter. Phys. Rev. A 66, 011604 (2002)

    ADS  Article  Google Scholar 

  27. 27

    McCumber, D. E. & Halperin, B. I. Time scale of intrinsic resistive fluctuations in thin superconducting wires. Phys. Rev. B 1, 1054–1070 (1970)

    ADS  Article  Google Scholar 

  28. 28

    Matthews, M. R. et al. Vortices in a Bose-Einstein condensate. Phys. Rev. Lett. 83, 2498–2501 (1999)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Anderson, B. P. et al. Watching dark solitons decay into vortex rings in a Bose-Einstein condensate. Phys. Rev. Lett. 86, 2926–2929 (2001)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Plourde, B. L. T. et al. Influence of edge barriers on vortex dynamics in thin weak-pinning superconducting strips. Phys. Rev. B 6401, 014503 (2001)

    ADS  Article  Google Scholar 

  31. 31

    Greiner, M. et al. Exploring phase coherence in a 2D lattice of Bose-Einstein condensates. Phys. Rev. Lett. 87, 160405 (2001)

    ADS  CAS  Article  Google Scholar 

  32. 32

    Blakie, P. B. & Porto, J. V. Adiabatic loading of bosons into optical lattices. Phys. Rev. A. 69, 013603 (2004)

    ADS  Article  Google Scholar 

  33. 33

    Ho, T.-L. & Zhou, Q. Intrinsic heating and cooling in adiabatic processes for bosons in optical lattices. Phys. Rev. Lett. 99, 120404 (2007)

    ADS  Article  Google Scholar 

  34. 34

    Rey, A., Pupillo, G. & Porto, J. V. The role of interactions, tunneling, and harmonic confinement on the adiabatic loading of bosons in an optical lattice. Phys. Rev. A. 73, 023608 (2006)

    ADS  Article  Google Scholar 

  35. 35

    Denschlag, J. H. et al. A Bose-Einstein condensate in an optical lattice. J. Phys. B 35, 3095–3110 (2002)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank R. Barankov, E. Demler, P. Goldbart, N. Goldenfeld, D. Pekker and P. Phillips for discussions, and D. S. Jin, N. Mason and J. V. Porto for critically reading this manuscript. This work was supported by the National Science Foundation, the Office of Naval Research and the UIUC Research Board. D.M. acknowledges support from the Carver Foundation and NSERC.

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. DeMarco.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

McKay, D., White, M., Pasienski, M. et al. Phase-slip-induced dissipation in an atomic Bose–Hubbard system. Nature 453, 76–79 (2008). https://doi.org/10.1038/nature06920

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing