Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Origin of a ‘Southern Hemisphere’ geochemical signature in the Arctic upper mantle

Abstract

The Gakkel ridge, which extends under the Arctic ice cap for 1,800 km, is the slowest spreading ocean ridge on Earth. Its spreading created the Eurasian basin, which is isolated from the rest of the oceanic mantle by North America, Eurasia and the Lomonosov ridge. The Gakkel ridge thus provides unique opportunities to investigate the composition of the sub-Arctic mantle and mantle heterogeneity and melting at the lower limits of seafloor spreading. The first results of the 2001 Arctic Mid-Ocean Ridge Expedition (ref. 1) divided the Gakkel ridge into three tectonic segments, composed of robust western and eastern volcanic zones separated by a ‘sparsely magmatic zone’. On the basis of Sr–Nd–Pb isotope ratios and trace elements in basalts from the spreading axis, we show that the sparsely magmatic zone contains an abrupt mantle compositional boundary. Basalts to the west of the boundary display affinities to the Southern Hemisphere ‘Dupal’ isotopic province2, whereas those to the east—closest to the Eurasian continent and where the spreading rate is slowest—display affinities to ‘Northern Hemisphere’ ridges. The western zone is the only known spreading ridge outside the Southern Hemisphere that samples a significant upper-mantle region with Dupal-like characteristics. Although the cause of Dupal mantle has been long debated, we show that the source of this signature beneath the western Gakkel ridge was subcontinental lithospheric mantle that delaminated and became integrated into the convecting Arctic asthenosphere. This occurred as North Atlantic mantle propagated north into the Arctic during the separation of Svalbard and Greenland.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Distinct western and eastern geochemical provinces in Gakkel ridge basalts.
Figure 2: Gakkel basalts as a microcosm of global MORBs.
Figure 3: Gakkel ridge and Spitsbergen basalts.
Figure 4: Cenozoic-era evolution of the Arctic upper mantle.

References

  1. 1

    Michael, P. J. et al. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean. Nature 423, 956–961 (2003)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Hart, S. R. A large-scale isotopic anomaly in the Southern Hemisphere mantle. Nature 309, 753–757 (1984)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Mühe, R., Bohrmann, H., Garbe-Schönberg, D. & Kassens, H. E-MORB glasses from the Gakkel Ridge (Arctic Ocean) at 87°N: evidence for the Earth's most northerly volcanic activity. Earth Planet. Sci. Lett. 152, 1–9 (1997)

    ADS  Article  Google Scholar 

  4. 4

    Dick, H. J. B., Lin, J. & Schouten, H. An ultraslow-spreading class of ocean ridge. Nature 426, 405–412 (2003)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Klein, E. M., Langmuir, C. H., Zindler, A., Staudigal, H. & Hamelin, B. Isotope evidence of a mantle convection boundary at the Australian-Antarctic Discordance. Nature 333, 623–629 (1988)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Dosso, L. et al. The age and distribution of mantle heterogeneity along the Mid-Atlantic Ridge (31–41°N). Earth Planet. Sci. Lett. 170, 269–286 (1999)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Shirey, S. B., Bender, J. F. & Langmuir, C. H. Three-component isotopic heterogeneity near the Oceanographer transform, Mid-Atlantic Ridge. Nature 325, 217–223 (1987)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Skjelkvale, B. L., Amundsen, H. E. F., Oreilly, S. Y., Griffin, W. L. & Gjelsvik, T. A primitive alkali basaltic stratovolcano and associated eruptive centers, Northwestern Spitsbergen: Volcanology and tectonic significance. J. Volcanol. Geotherm. Res. 37, 1–19 (1989)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Ionov, D. A., Bodinier, J. L., Mukasa, S. B. & Zanetti, A. Mechanisms and sources of mantle metasomatism: Major and trace element compositions of peridotite xenoliths from Spitsbergen in the context of numerical modeling. J. Petrol. 43, 2219–2259 (2002)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Ionov, D. A., Mukasa, S. B. & Bodinier, J. L. Sr-Nd-Pb isotopic compositions of peridotite xenoliths from Spitsbergen: Numerical modelling indicates Sr-Nd decoupling in the mantle by melt percolation metasomatism. J. Petrol. 43, 2261–2278 (2002)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Clague, D. A. & Frey, F. A. Petrology and trace element chemistry of the Honolulu volcanics, Oahu: Implication for the oceanic mantle below Hawaii. J. Petrol. 23, 447–504 (1982)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Class, C. & Goldstein, S. L. Plume-lithosphere interactions in the ocean basins: constraints from the source mineralogy. Earth Planet. Sci. Lett. 150, 245–260 (1997)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Niida, K. & Green, D. H. Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contrib. Mineral. Petrol. 135, 18–40 (1999)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Blythe, A. E. & Kleinspehn, K. L. Tectonically versus climatically driven exhumation of the Eurasian plate margin, Svalbard: Fission track analyses. Tectonics 17, 621–639 (1998)

    ADS  Article  Google Scholar 

  15. 15

    Ritzmann, O. & Jokat, W. Crustal structure of northwestern Svalbard and the adjacent Yermak Plateau: evidence for Oligocene detachment tectonics and non-volcanic breakup. Geophys. J. Int. 152, 139–159 (2003)

    ADS  Article  Google Scholar 

  16. 16

    Zhang, S. Q. et al. Evidence for a widespread Tethyan upper mantle with Indian-Ocean-type isotopic characteristics. J. Petrol. 46, 829–858 (2005)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Dupré, B. & Allègre, C. J. Pb–Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature 303, 142–146 (1983)

    ADS  Article  Google Scholar 

  18. 18

    Hawkesworth, C. J., Mantovani, M. S. M., Taylor, P. N. & Palacz, Z. Evidence from the Paraña of south Brazil for a continental contribution to Dupal basalts. Nature 322, 356–359 (1986)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Castillo, P. The Dupal anomaly as a trace of the upwelling lower mantle. Nature 336, 667–670 (1988)

    ADS  Article  Google Scholar 

  20. 20

    Arndt, N. T. & Goldstein, S. L. An open boundary between lower continental crust and mantle: its role in crust formation and crustal recycling. Tectonophysics 161, 201–212 (1989)

    ADS  CAS  Article  Google Scholar 

  21. 21

    le Roex, A. P., Dick, H. J. B. & Fisher, R. L. Petrology and geochemistry of MORB from 25°E to 46°E along the Southwest Indian Ridge: Evidence for contrasting styles of mantle enrichment. J. Petrol. 30, 947–986 (1989)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Mahoney, J. J. et al. Isotopic and geochemical provinces of the Western Indian Ocean spreading centers. J. Geophys. Res. 94, 4033–4052 (1989)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Barling, J., Goldstein, S. L. & Nicholls, I. A. Geochemistry of Heard Island (southern Indian Ocean): Characterization of an enriched mantle component and implications for the enrichment of the sub-Indian Ocean mantle. J. Petrol. 35, 1017–1053 (1994)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Rehkamper, M. & Hofmann, A. W. Recycled ocean crust and sediment in Indian Ocean MORB. Earth Planet. Sci. Lett. 147, 93–106 (1997)

    ADS  Article  Google Scholar 

  25. 25

    Kempton, P. D. et al. Sr-Nd-Pb-Hf isotope results from ODP Leg 187: Evidence for mantle dynamics of the Australian-Antarctic Discordance and origin of the Indian MORB source. Geochem. Geophys. Geosyst. 3 10.1029/2002GC000320 (2002)

    Article  Google Scholar 

  26. 26

    Hanan, B. B., Blichert-Toft, J., Pyle, D. G. & Christie, D. M. Contrasting origins of the upper mantle revealed by hafnium and lead isotopes from the Southeast Indian Ridge. Nature 432, 91–94 (2004)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Escrig, S., Capmas, F., Dupré, B. & Allègre, C. J. Osmium isotopic constraints on the nature of the DUPAL anomaly from Indian mid-ocean-ridge basalts. Nature 431, 59–63 (2004)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Meyzen, C. M. et al. New insights into the origin and distribution of the DUPAL isotope anomaly in the Indian Ocean mantle from MORB of the Southwest Indian Ridge. Geochem. Geophys. Geosyst. 6 10.1029/2005GC000979 (2005)

    Article  Google Scholar 

  29. 29

    Geldmacher, J., Hoernle, K., Klugel, A., van den Bogaard, P. & Bindemann, I. Geochemistry of a new enriched mantle type locality in the northern hemisphere: Implications for the origin of the EM-I source. Earth Planet. Sci. Lett. 265, 167–182 (2008)

    ADS  CAS  Article  Google Scholar 

  30. 30

    le Roux, P. J. et al. Mantle heterogeneity beneath the southern Mid-Atlantic Ridge: trace element evidence for contamination of ambient asthenospheric mantle. Earth Planet. Sci. Lett. 203, 479–498 (2002)

    ADS  CAS  Article  Google Scholar 

  31. 31

    Janney, P. E., le Roex, A. P. & Carlson, R. W. Hafnium isotope and trace element constraints on the nature of mantle heterogeneity beneath the central Southwest Indian Ridge (13°E to 47°E). J. Petrol. 46, 2427–2464 (2005)

    ADS  CAS  Article  Google Scholar 

  32. 32

    Salters, V. J. M. & Stracke, A. Composition of the depleted mantle. Geochem. Geophys. Geosyst. 5 10.1029/2003GC000597 (2004)

  33. 33

    Workman, R. K. & Hart, S. R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53–72 (2005)

    ADS  CAS  Article  Google Scholar 

  34. 34

    Todt, W., Cliff, R. A., Hanser, A. & Hofmann, A. W. in Earth Processes: Reading the Isotopic Code Vol. 95 (eds Basu, A. & Hart, S. R.) 429–437 (American Geophysical Union, Washington DC, 1996)

    Google Scholar 

Download references

Acknowledgements

We thank A. le Roex for comments that helped to improve this paper. This work was supported by the US National Science Foundation. G.S. was supported partly by a Paul and Daisy Soros Fellowship for New Americans.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Steven L. Goldstein.

Additional information

The geochemical data reported here are available in the Petrological Database of the Ocean Floor (http://www.petdb.org).

Supplementary information

Supplementary Information

The file contains Supplementary Tables S1-S3, Supplementary Discussion, Supplementary Figures S1-S4 with legends and additional references. (PDF 270 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goldstein, S., Soffer, G., Langmuir, C. et al. Origin of a ‘Southern Hemisphere’ geochemical signature in the Arctic upper mantle. Nature 453, 89–93 (2008). https://doi.org/10.1038/nature06919

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing