Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Translating insights from the cancer genome into clinical practice

Abstract

Cancer cells have diverse biological capabilities that are conferred by numerous genetic aberrations and epigenetic modifications. Today's powerful technologies are enabling these changes to the genome to be catalogued in detail. Tomorrow is likely to bring a complete atlas of the reversible and irreversible alterations that occur in individual cancers. The challenge now is to work out which molecular abnormalities contribute to cancer and which are simply 'noise' at the genomic and epigenomic levels. Distinguishing between these will aid in understanding how the aberrations in a cancer cell collaborate to drive pathophysiology. Past successes in converting information from genomic discoveries into clinical tools provide valuable lessons to guide the translation of emerging insights from the genome into clinical end points that can affect the practice of cancer medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Various types of genomic and epigenomic aberration in cancers.
Figure 2: Integration of complex multidimensional genomic data with insights from other model systems.
Figure 3: Disruption of intracellular signalling by alterations in the cancer genome.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  2. Collins, F. S. & Barker, A. D. Mapping the cancer genome. Pinpointing the genes involved in cancer will help chart a new course across the complex landscape of human malignancies. Sci. Am. 296, 50–57 (2007).

    CAS  PubMed  Google Scholar 

  3. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Pao, W. et al. EGF receptor gene mutations are common in lung cancers from 'never smokers' and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl Acad. Sci. USA 101, 13306–13311 (2004). References 3–5 show that a subset of patients with lung cancer have EGFR mutations and are responsive to an EGFR-specific tyrosine kinase inhibitor, a finding based on prospective analyses of retrospective data.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR–ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344, 1031–1037 (2001). This paper provides the first proof of concept of targeted therapy: chronic myeloid leukaemia harbouring BCR–ABL was shown to be sensitive to treatment with a BCR–ABL-specific tyrosine-kinase inhibitor, imatinib mesylate.

    CAS  PubMed  Google Scholar 

  7. Pegram, M. & Slamon, D. Biological rationale for HER2/neu (c-erbB2) as a target for monoclonal antibody therapy. Semin. Oncol. 27, 13–19 (2000).

    CAS  PubMed  Google Scholar 

  8. Malkin, D. et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250, 1233–1238 (1990).

    ADS  CAS  PubMed  Google Scholar 

  9. Futreal, P. A. et al. BRCA1 mutations in primary breast and ovarian carcinomas. Science 266, 120–122 (1994).

    ADS  CAS  PubMed  Google Scholar 

  10. Miki, Y. et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1 . Science 266, 66–71 (1994).

    ADS  CAS  PubMed  Google Scholar 

  11. Wooster, R. et al. Identification of the breast cancer susceptibility gene BRCA2 . Nature 378, 789–792 (1995).

    ADS  CAS  PubMed  Google Scholar 

  12. Marra, G. & Boland, C. R. Hereditary nonpolyposis colorectal cancer: the syndrome, the genes, and historical perspectives. J. Natl Cancer Inst. 87, 1114–1125 (1995).

    CAS  PubMed  Google Scholar 

  13. Gruis, N. A. et al. Homozygotes for CDKN2 (p16) germline mutation in Dutch familial melanoma kindreds. Nature Genet. 10, 351–3 (1995).

    CAS  PubMed  Google Scholar 

  14. Nowell, P. C. Discovery of the Philadelphia chromosome: a personal perspective. J. Clin. Invest. 117, 2033–2035 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Nardi, V., Azam, M. & Daley, G. Q. Mechanisms and implications of imatinib resistance mutations in BCR–ABL. Curr. Opin. Hematol. 11, 35–43 (2004).

    CAS  PubMed  Google Scholar 

  16. Quintas-Cardama, A., Kantarjian, H. & Cortes, J. Flying under the radar: the new wave of BCR–ABL inhibitors. Nature Rev. Drug Discov. 6, 834–848 (2007).

    CAS  Google Scholar 

  17. Demetri, G. D. Targeting c-kit mutations in solid tumors: scientific rationale and novel therapeutic options. Semin. Oncol. 28, 19–26 (2001).

    CAS  PubMed  Google Scholar 

  18. Curtin, J. A., Busam, K., Pinkel, D. & Bastian, B. C. Somatic activation of KIT in distinct subtypes of melanoma. J. Clin. Oncol. 24, 4340–4346 (2006).

    CAS  PubMed  Google Scholar 

  19. Hodi, F. et al. A major response to Imatinib mesylate in KIT mutated melanoma. J. Clin. Orthod. (in the press).

  20. Rowley, J. D. The role of chromosome translocations in leukemogenesis. Semin. Hematol. 36, 59–72 (1999).

    CAS  PubMed  Google Scholar 

  21. Tomlins, S. A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005).

    ADS  CAS  PubMed  Google Scholar 

  22. Bradford, T. J., Tomlins, S. A., Wang, X. & Chinnaiyan, A. M. Molecular markers of prostate cancer. Urol. Oncol. 24, 538–551 (2006).

    CAS  PubMed  Google Scholar 

  23. Volik, S. et al. End-sequence profiling: sequence-based analysis of aberrant genomes. Proc. Natl Acad. Sci. USA 100, 7696–7701 (2003).

    ADS  PubMed  PubMed Central  Google Scholar 

  24. Bignell, G. R. et al. Architectures of somatic genomic rearrangement in human cancer amplicons at sequence-level resolution. Genome Res. 17, 1296–1303 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Campbell, P. J. et al. Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nature Genet. (in the press).

  26. Schechter, A. L. et al. The neu oncogene: an erb-B-related gene encoding a 185,000-M r tumour antigen. Nature 312, 513–516 (1984).

    ADS  CAS  PubMed  Google Scholar 

  27. King, C. R., Kraus, M. H. & Aaronson, S. A. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science 229, 974–976 (1985).

    ADS  CAS  PubMed  Google Scholar 

  28. Semba, K., Kamata, N., Toyoshima, K. & Yamamoto, T. A v-erbB-related protooncogene, c-erbB-2, is distinct from the c-erbB-1/epidermal growth factor-receptor gene and is amplified in a human salivary gland adenocarcinoma. Proc. Natl Acad. Sci. USA 82, 6497–6501 (1985).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Coussens, L. et al. Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 230, 1132–1139 (1985).

    ADS  CAS  PubMed  Google Scholar 

  30. Slamon, D. J. et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177–182 (1987). This study correlated ERBB2 amplification with outcome for individuals with breast cancer.

    ADS  CAS  PubMed  Google Scholar 

  31. Kallioniemi, A. et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258, 818–821 (1992).

    ADS  CAS  PubMed  Google Scholar 

  32. Cameron, D. et al. A phase III randomized comparison of lapatinib plus capecitabine versus capecitabine alone in women with advanced breast cancer that has progressed on trastuzumab: updated efficacy and biomarker analyses. Breast Cancer Res. Treat. doi:10.1007/s10549-007-9885-0 (in the press).

  33. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    ADS  CAS  PubMed  Google Scholar 

  34. Samuels, Y. et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 304, 554 (2004).

    CAS  PubMed  Google Scholar 

  35. Carpten, J. D. et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448, 439–444 (2007).

    ADS  CAS  PubMed  Google Scholar 

  36. Stephens, P. et al. Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature 431, 525–526 (2004).

    ADS  CAS  PubMed  Google Scholar 

  37. Sharma, S. V., Bell, D. W., Settleman, J. & Haber, D. A. Epidermal growth factor receptor mutations in lung cancer. Nature Rev. Cancer 7, 169–181 (2007).

    CAS  Google Scholar 

  38. Blackhall, F., Ranson, M. & Thatcher, N. Where next for gefitinib in patients with lung cancer? Lancet Oncol. 7, 499–507 (2006).

    CAS  PubMed  Google Scholar 

  39. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    ADS  CAS  PubMed  Google Scholar 

  40. Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wood, L. D. et al. The genomic landscapes of human breast and colorectal cancers. Science 318, 1108–1113 (2007). References 40 and 41 report on large-scale sequencing studies aimed at identifying somatic mutations in human cancers.

    ADS  CAS  PubMed  Google Scholar 

  42. Sharpless, N. E. INK4a/ARF: a multifunctional tumor suppressor locus. Mutat. Res. 576, 22–38 (2005).

    CAS  PubMed  Google Scholar 

  43. Shayesteh, L. et al. PIK3CA is implicated as an oncogene in ovarian cancer. Nature Genet. 21, 99–102 (1999).

    CAS  PubMed  Google Scholar 

  44. Horvitz, H. R., Shaham, S. & Hengartner, M. O. The genetics of programmed cell death in the nematode Caenorhabditis elegans . Cold Spring Harb. Symp. Quant. Biol. 59, 377–385 (1994).

    CAS  PubMed  Google Scholar 

  45. Nurse, P., Masui, Y. & Hartwell, L. Understanding the cell cycle. Nature Med. 4, 1103–1106 (1998).

    CAS  PubMed  Google Scholar 

  46. Schreiber-Agus, N. et al. Drosophila Myc is oncogenic in mammalian cells and plays a role in the diminutive phenotype. Proc. Natl Acad. Sci. USA 94, 1235–1240 (1997).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim, M. et al. Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell 125, 1269–1281 (2006).

    CAS  PubMed  Google Scholar 

  48. Zender, L. et al. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 125, 1253–1267 (2006). References 47 and 48 show the power of cross-species integration of cancer genome data for oncogene discovery.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Maser, R. S. et al. Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature 447, 966–971 (2007). This paper compares the genomes of mouse tumour cells with genetically engineered chromosomal instability to the genomes of various human cancers and shows that there is a significant non-random number of syntenic events, proving that mouse and human cells can experience common biological processes driven by orthologous genetic events during transformation.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sweet-Cordero, A. et al. An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis. Nature Genet. 37, 48–55 (2005).

    CAS  PubMed  Google Scholar 

  51. O'Neil, J. et al. Activating Notch1 mutations in mouse models of T-ALL. Blood 107, 781–785 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Chin, L., Garraway, L. A. & Fisher, D. E. Malignant melanoma: genetics and therapeutics in the genomic era. Genes Dev. 20, 2149–2182 (2006).

    CAS  PubMed  Google Scholar 

  53. Hodgson, J. G. et al. Copy number aberrations in mouse breast tumors reveal loci and genes important in tumorigenic receptor tyrosine kinase signaling. Cancer Res. 65, 9695–9704 (2005).

    CAS  PubMed  Google Scholar 

  54. Artandi, S. E. & DePinho, R. A. Mice without telomerase: what can they teach us about human cancer? Nature Med. 6, 852–855 (2000).

    CAS  PubMed  Google Scholar 

  55. Artandi, S. E. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406, 641–645 (2000).

    ADS  CAS  PubMed  Google Scholar 

  56. Maser, R. S. et al. DNA-dependent protein kinase catalytic subunit is not required for dysfunctional telomere fusion and checkpoint response in the telomerase-deficient mouse. Mol. Cell. Biol. 27, 2253–2265 (2007).

    CAS  PubMed  Google Scholar 

  57. O'Hagan, R. C. et al. Telomere dysfunction provokes regional amplification and deletion in cancer genomes. Cancer Cell 2, 149–155 (2002).

    CAS  PubMed  Google Scholar 

  58. Palomero, T. et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nature Med. 13, 1203–1210 (2007).

    CAS  PubMed  Google Scholar 

  59. Ewart-Toland, A. et al. Identification of Stk6/STK15 as a candidate low-penetrance tumor-susceptibility gene in mouse and human. Nature Genet. 34, 403–412 (2003).

    CAS  PubMed  Google Scholar 

  60. Ewart-Toland, A. et al. Aurora-A/STK15 T+91A is a general low penetrance cancer susceptibility gene: a meta-analysis of multiple cancer types. Carcinogenesis 26, 1368–1373 (2005).

    CAS  PubMed  Google Scholar 

  61. Uren, A. G., Kool, J., Berns, A. & van Lohuizen, M. Retroviral insertional mutagenesis: past, present and future. Oncogene 24, 7656–7672 (2005).

    CAS  PubMed  Google Scholar 

  62. Sharpless, N. E. & Depinho, R. A. The mighty mouse: genetically engineered mouse models in cancer drug development. Nature Rev. Drug Discov. 5, 741–754 (2006).

    CAS  Google Scholar 

  63. Westbrook, T. F. et al. A genetic screen for candidate tumor suppressors identifies REST. Cell 121, 837–848 (2005).

    CAS  PubMed  Google Scholar 

  64. Boehm, J. S. et al. Integrative genomic approaches identify IKBKE as a breast cancer oncogene. Cell 129, 1065–1079 (2007). References 63 and 64 integrate hits from forward genetic screening, using RNAi, with genomic profiles of human cancers to find previously unidentified oncogenes.

    CAS  PubMed  Google Scholar 

  65. Berns, K. et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumasb resistance in breast cancer. Cancer Cell 12, 395–402 (2007).

    CAS  PubMed  Google Scholar 

  66. Staunton, J. E. et al. Chemosensitivity prediction by transcriptional profiling. Proc. Natl Acad. Sci. USA 98, 10787–10792 (2001).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bild, A. H. et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439, 353–357 (2006).

    ADS  CAS  PubMed  Google Scholar 

  68. Konecny, G. E. et al. Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res. 66, 1630–1639 (2006).

    CAS  PubMed  Google Scholar 

  69. Hieronymus, H. et al. Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. Cancer Cell 10, 321–330 (2006).

    CAS  PubMed  Google Scholar 

  70. Wei, G. et al. Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell 10, 331–342 (2006).

    CAS  PubMed  Google Scholar 

  71. Neve, R. M. et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10, 515–527 (2006). This study shows that the cancer genomes of a panel of human cancer cell lines reflect the genomic diversity of human cancers.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wong, K. K. HKI-272 in non small cell lung cancer. Clin. Cancer Res. 13, s4593–s4596 (2007).

    PubMed  Google Scholar 

  73. Scappini, B. et al. Changes associated with the development of resistance to imatinib (STI571) in two leukemia cell lines expressing p210 Bcr/Abl protein. Cancer 100, 1459–1471 (2004).

    CAS  PubMed  Google Scholar 

  74. Furnari, F. B. et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 21, 2683–2710 (2007).

    CAS  PubMed  Google Scholar 

  75. Mellinghoff, I. K. et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N. Engl. J. Med. 353, 2012–2024 (2005).

    CAS  PubMed  Google Scholar 

  76. Stommel, J. M. et al. Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 318, 287–290 (2007).

    ADS  CAS  PubMed  Google Scholar 

  77. Greshock, J. et al. A comparison of DNA copy number profiling platforms. Cancer Res. 67, 10173–10180 (2007).

    CAS  PubMed  Google Scholar 

  78. Korbel, J. O. et al. Paired-end mapping reveals extensive structural variation in the human genome. Science 318, 420–426 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Drmanac, R. et al. DNA sequence determination by hybridization: a strategy for efficient large-scale sequencing. Science 260, 1649–1652 (1993).

    ADS  CAS  PubMed  Google Scholar 

  80. Sanger, F. & Coulson, A. R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol. 94, 441–448 (1975).

    CAS  PubMed  Google Scholar 

  81. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shendure, J. et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309, 1728–1732 (2005).

    ADS  CAS  PubMed  Google Scholar 

  83. Porreca, G. J. et al. Multiplex amplification of large sets of human exons. Nature Methods 4, 931–936 (2007).

    CAS  PubMed  Google Scholar 

  84. Costello, J. F. et al. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nature Genet. 24, 132–138 (2000).

    CAS  PubMed  Google Scholar 

  85. Dai, Z. et al. An AscI boundary library for the studies of genetic and epigenetic alterations in CpG islands. Genome Res. 12, 1591–1598 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Plass, C. et al. An arrayed human not I-EcoRV boundary library as a tool for RLGS spot analysis. DNA Res. 4, 253–255 (1997).

    CAS  PubMed  Google Scholar 

  87. van Steensel, B. & Henikoff, S. Epigenomic profiling using microarrays. Biotechniques 35, 346–350, 352–354, 356–357 (2003).

    CAS  PubMed  Google Scholar 

  88. Meissner, A. et al. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res. 33, 5868–5877 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Hu, M. et al. Distinct epigenetic changes in the stromal cells of breast cancers. Nature Genet. 37, 899–905 (2005).

    CAS  PubMed  Google Scholar 

  90. Leary, R. J., Cummins, J., Wang, T. L. & Velculescu, V. E. Digital karyotyping. Nature Protoc. 2, 1973–1986 (2007).

    CAS  Google Scholar 

  91. Collas, P. & Dahl, J. A. Chop it, ChIP it, check it: the current status of chromatin immunoprecipitation. Front. Biosci. 13, 929–943 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. DePinho, A. Futreal, P. Mischel, A. Kimmelman, K.-K. Wong, W. Hahn and K. Polyak for discussions and critical reading of the manuscript. This work was supported in part by the US Department of Energy, the Office of Science, the Office of Biological and Environmental Research, the National Institutes of Health and the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://npg.nature.com/reprints.

Correspondence should be addressed to L.C. (lynda_chin@dfci.harvard.edu).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chin, L., Gray, J. Translating insights from the cancer genome into clinical practice. Nature 452, 553–563 (2008). https://doi.org/10.1038/nature06914

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06914

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing