Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

True polar wander on Europa from global-scale small-circle depressions


The tectonic patterns and stress history of Europa are exceedingly complex1 and many large-scale features remain unexplained. True polar wander, involving reorientation of Europa’s floating outer ice shell about the tidal axis with Jupiter, has been proposed2 as a possible explanation for some of the features. This mechanism is possible if the icy shell is latitudinally variable in thickness and decoupled from the rocky interior. It would impose high stress levels on the shell, leading to predictable fracture patterns3. No satisfactory match to global-scale features has hitherto been found for polar wander stress patterns3. Here we describe broad arcuate troughs and depressions on Europa that do not fit other proposed stress mechanisms in their current position. Using imaging from three spacecraft, we have mapped two global-scale organized concentric antipodal sets of arcuate troughs up to hundreds of kilometres long and 300 m to 1.5 km deep. An excellent match to these features is found with stresses caused by an episode of 80° true polar wander. These depressions also appear to be geographically related to other large-scale bright and dark lineaments4,5, suggesting that many of Europa’s tectonic patterns may also be related to true polar wander.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Regional views of global-scale arcuate troughs and basins on Europa.
Figure 2: A global map of the distribution of large-scale arcuate troughs and basins on Europa.
Figure 3: Highest-resolution image mosaic of a large secondary basin on Europa.
Figure 4: Global colour mosaic and predicted stress patterns for true polar wander in a thin elastic shell on Europa.


  1. Greeley, R. et al. in Jupiter (eds Bagenal, F., Dowling, T. & McKinnon, W.) 329–362 (Cambridge Univ. Press, Cambridge, UK, 2004)

    Google Scholar 

  2. Ojakangas, G. & Stevenson, D. Polar wander of an ice shell on Europa. Icarus 81, 242–270 (1989)

    Article  CAS  ADS  Google Scholar 

  3. Leith, A. & McKinnon, W. Is there evidence for polar wander on Europa? Icarus 120, 387–398 (1996)

    Article  ADS  Google Scholar 

  4. Prockter, L., Pappalardo, R. & Head, J. Strike-slip duplexing on Jupiter’s icy moon Europa. J. Geophys. Res. 105, 9483–9488 (2000)

    Article  ADS  Google Scholar 

  5. Schenk, P. & McKinnon, W. Fault offsets and lateral crustal movement on Europa: Evidence for a mobile ice shell. Icarus 79, 75–100 (1989)

    Article  CAS  ADS  Google Scholar 

  6. Schenk, P. & McKinnon, W. Ring geometry on Ganymede and Callisto. Icarus 72, 209–234 (1987)

    Article  ADS  Google Scholar 

  7. Grundy, W. et al. New Horizons mapping of Europa and Ganymede. Science 318, 234–238 (2007)

    Article  CAS  ADS  Google Scholar 

  8. Schenk, P. & McKinnon, W. Topographic variability on Europa from Galileo stereo images. Lunar Planet. Sci. Conf. 32, abstr. 2078 (2001)

  9. Figueredo, P. & Greeley, R. Geologic mapping of the northern leading hemisphere of Europa from Galileo solid-state imaging data. J. Geophys. Res. 105, 22629–22646 (2000)

    Article  ADS  Google Scholar 

  10. Prockter, L. & Schenk, P. Origin and evolution of Castalia Macula, an anomalous young depression on Europa. Icarus 177, 305–326 (2005)

    Article  ADS  Google Scholar 

  11. Figueredo, P. & Greeley, R. Resurfacing history of Europa from pole-to-pole geologic mapping. Icarus 167, 287–312 (2004)

    Article  ADS  Google Scholar 

  12. Schenk, P. Crop circles of Europa. Lunar Planet. Sci. Conf. 30, abstr. 2081 (2005)

  13. Greenberg, R. The evil twin of Agenor: Tectonic convergence on Europa. Icarus 167, 313–319 (2004)

    Article  ADS  Google Scholar 

  14. Nimmo, F. Stresses generated in cooling viscoelastic ice shells: Application to Europa. J. Geophys. Res. 109 E12001 10.1029/2004JE002347 (2004)

    Article  ADS  Google Scholar 

  15. Greenberg, R. et al. Tectonic processes on Europa: Tidal stresses, mechanical response, and visible features. Icarus 135, 64–78 (1998)

    Article  ADS  Google Scholar 

  16. Melosh, H. J. Global tectonics of a despun planet. Icarus 31, 221–243 (1977)

    Article  ADS  Google Scholar 

  17. Greenberg, R. & Weidenschilling, S. How fast do Galilean satellites spin? Icarus 58, 186–196 (1984)

    Article  ADS  Google Scholar 

  18. Hoppa, G., Tufts, B. R., Greenberg, R. & Geissler, P. Formation of cycloidal features on Europa. Science 285, 1899–1902 (1999)

    Article  CAS  ADS  Google Scholar 

  19. Geissler, P. et al. Evidence for non-synchronous rotation of Europa. Nature 391, 368–370 (1998)

    Article  CAS  ADS  Google Scholar 

  20. Matsuyama, I. & Nimmo, F. Tectonic patterns of a reoriented and despun planetary bodies. Icarus 10.1016/j.icarus.2007.12.003 (in the press)

  21. Melosh, H. J. Tectonic patterns on a reoriented planet — Mars. Icarus 44, 745–751 (1980)

    Article  ADS  Google Scholar 

  22. Sarid, M. et al. Polar wander and surface convergence of Europa’s ice shell: Evidence from a survey of strike-slip displacement. Icarus 158, 24–41 (2002)

    Article  CAS  ADS  Google Scholar 

  23. Matsuyama, I. & Nimmo, F. Rotational stability of tidally deformed planetary bodies. J. Geophys. Res. 112 E11003 10.1029/2007JE002942 (2007)

    Article  ADS  Google Scholar 

  24. Stevenson, D. Limits on the variation of thickness of Europa’s ice shell. Lunar Planet. Sci. Conf. 31, abstr. 1506 (2000)

  25. Matsuyama, I., Nimmo, F. & Mitrovica, J. Reorientation of planets with lithospheres: The effect of elastic energy. Icarus 191, 401–412 (2007)

    Article  ADS  Google Scholar 

  26. Willemann, R. Reorientation of planets with elastic lithospheres. Icarus 60, 701–709 (1984)

    Article  ADS  Google Scholar 

  27. Matsuyama, I., Mitrovica, J., Manga, M., Perron, J. & Richards, M. Rotational stability of dynamic planets with elastic lithospheres. J. Geophys. Res. 111 E02003 doi: 10.1029/2005JE002447 (2006)

    Article  ADS  Google Scholar 

  28. Nimmo, F. & Pappalardo, R. Diapir-induced reorientation of Saturn’s moon Enceladus. Nature 441, 614–616 (2006)

    Article  CAS  ADS  Google Scholar 

  29. Janes, D. M. & Melosh, H. J. Sinker tectonics — an approach to the surface of Miranda. J. Geophys. Res. 93, 3127–3143 (1988)

    Article  ADS  Google Scholar 

Download references


This work was supported in part by the NASA Outer Planets Research and Planetary Geology and Geophysics programmes. LPI contribution no. 1399.

Author Contributions Global mapping and topographic analyses were conducted by P.S.; P.S. and F.N. conducted preliminary examination of alternative models; numerical modelling of stress patterns was conducted by I.M.; and P.S wrote the paper, with contributions from I.M. and F.N.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Paul Schenk.

Supplementary information

Supplementary information

The file contains Supplementary Figures 1-4 with Legends. (PDF 3391 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schenk, P., Matsuyama, I. & Nimmo, F. True polar wander on Europa from global-scale small-circle depressions. Nature 453, 368–371 (2008).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing