Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A massive binary black-hole system in OJ 287 and a test of general relativity

Abstract

Tests of Einstein’s general theory of relativity have mostly been carried out in weak gravitational fields where the space-time curvature effects are first-order deviations from Newton’s theory1,2,3,4,5,6. Binary pulsars4 provide a means of probing the strong gravitational field around a neutron star, but strong-field effects may be best tested in systems containing black holes7,8. Here we report such a test in a close binary system of two candidate black holes in the quasar OJ 287. This quasar shows quasi-periodic optical outbursts at 12-year intervals, with two outburst peaks per interval9,10. The latest outburst occurred in September 2007, within a day of the time predicted by the binary black-hole model and general relativity11. The observations confirm the binary nature of the system and also provide evidence for the loss of orbital energy in agreement (within 10 per cent) with the emission of gravitational waves from the system12. In the absence of gravitational wave emission the outburst would have happened 20 days later13.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Optical V-band fluxes of OJ 287 versus time in relative units.
Figure 2: Optical photometry and polarimetry of OJ 287 in September–October, 2007.

References

  1. Misner, C. W., Thorne, K. S. & Wheeler, J. A. Gravitation (Freeman, San Francisco, 1973)

    Google Scholar 

  2. Pound, R. V. & Rebka, G. A. Gravitational redshift in nuclear resonance. Phys. Rev. Lett. 3, 439–441 (1959)

    CAS  Article  ADS  Google Scholar 

  3. Taylor, J. H. & Weisberg, J. M. Further experimental tests of relativistic gravity using the binary pulsar PSR1913+16. Astrophys. J. 345, 434–450 (1989)

    Article  ADS  Google Scholar 

  4. Hulse, R. A. The discovery of the binary pulsar. Rev. Mod. Phys. 66, 699–710 (1994)

    Article  ADS  Google Scholar 

  5. Walsh, D., Carswell, R. F. & Weymann, R. J. 0957 + 561 A, B: twin quasistellar objects or gravitational lens? Nature 279, 381–384 (1979)

    CAS  Article  ADS  Google Scholar 

  6. Ciufolini, I. & Pavlis, E. C. A confirmation of the general relativistic prediction of the Lense–Thirring effect. Nature 431, 958–960 (2004)

    CAS  Article  ADS  Google Scholar 

  7. Cui, W., Zhang, S. N. & Chen, W. Evidence for frame dragging around spinning black holes in X-ray binaries. Astrophys. J. 492, L53–L57 (1998)

    CAS  Article  ADS  Google Scholar 

  8. Bromley, B. C., Miller, W. A. & Pariev, V. I. The inner edge of the accretion disk around a supermassive black hole. Nature 391, 54–56 (1998)

    CAS  Article  ADS  Google Scholar 

  9. Sillanpää, A., Haarala, S., Valtonen, M. J., Sundelius, B. & Byrd, G. G. OJ287 – Binary pair of supermassive black holes. Astrophys. J. 325, 628–634 (1988)

    Article  ADS  Google Scholar 

  10. Lehto, H. J. & Valtonen, M. J. OJ287 outburst structure and a binary black hole model. Astrophys. J. 460, 207–213 (1996)

    Article  ADS  Google Scholar 

  11. Valtonen, M. J. OJ287: A binary black hole system. Rev. Mex. Astron. Astrofis. Conf. Ser. (in the press)

  12. Valtonen, M. J. & Lehto, H. J. Outbursts in OJ287: A new test for the General Theory of Relativity. Astrophys. J. 481, L5–L7 (1997)

    Article  ADS  Google Scholar 

  13. Valtonen, M. J. New orbit solutions for the precessing binary black hole model of OJ287. Astrophys. J. 659, 1074–1081 (2007)

    Article  ADS  Google Scholar 

  14. Valtonen, M. J. et al. Predicting the next outbursts of OJ287 in 2006–2010. Astrophys. J. 646, 36–48 (2006)

    Article  ADS  Google Scholar 

  15. Igumenshchev, I. V. & Abramowicz, M. A. Rotating accretion flows around black holes: convection and variability. Mon. Not. R. Astron. Soc. 303, 309–320 (1999)

    Article  ADS  Google Scholar 

  16. Hughes, P. A., Aller, H. D. & Aller, M. F. Extraordinary activity in the BL Lacertae object OJ287. Astrophys. J. 503, 662–673 (1998)

    Article  ADS  Google Scholar 

  17. Katz, J. I. A precessing disk in OJ287? Astrophys. J. 478, 527–529 (1997)

    Article  ADS  Google Scholar 

  18. Sundelius, B., Wahde, H., Lehto, H. J. & Valtonen, M. J. A numerical simulation of the brightness variations of OJ287. Astrophys. J. 484, 180–185 (1997)

    Article  ADS  Google Scholar 

  19. Pietilä, H. Possibilities and predictions of the OJ287 binary black hole model. Astrophys. J. 508, 669–675 (1998)

    Article  ADS  Google Scholar 

  20. Aarseth, S. J. Dancing with black holes, in Dynamical Evolution of Dense Stellar Systems (eds Vesperini, E., Gierz, M. & Sills, A.) (Proc. IAU Symp. 246, Cambridge Univ. Press, Cambridge, in the press); preprint at 〈http://arxiv.org/abs/0710.0585〉 (2007)

    Google Scholar 

  21. Vestergaard, M., Fan, X., Tremonti, C. A., Osmer, P. S. & Richards, G. T. Mass function of the active black holes in distant quasars from the Sloan Digital Sky Survey data release 3. Astrophys. J. 674, L1–L4 (2008); preprint at 〈http://arxiv.org/abs/0801.0243〉 (2008)

    CAS  Article  ADS  Google Scholar 

  22. Valtonen, M. J. et al. The 2005 November outburst in OJ287 and the binary black hole model. Astrophys. J. 643, L9–L12 (2006)

    Article  ADS  Google Scholar 

  23. Valtonen, M. J., Kidger, M., Lehto, H. J. & Poyner, G. The structure of the October/November 2005 outburst in OJ287 and the precessing binary black hole model. Astron. Astrophys. 477, 407–412 (2008)

    Article  ADS  Google Scholar 

  24. Ivanov, P. B., Igumenshchev, I. V. & Novikov, I. D. Hydrodynamics of black hole – accretion disk collision. Astrophys. J. 507, 131–144 (1998)

    Article  ADS  Google Scholar 

  25. Smith, P. S., Balonek, T. J., Elston, R. & Heckert, P. A. Optical and near-infrared observations of BL Lacertae objects and active quasars. Astrophys. J. Suppl. Ser. 64, 459–485 (1987)

    CAS  Article  ADS  Google Scholar 

  26. Fiorucci, M. & Tosti, G. VRI photometry of stars in the fields of 12 BL Lacertae objects. Astron. Astrophys. Suppl. Ser. 116, 403–407 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the European community (project ENIGMA), the German Science Foundation, the Japanese Ministry of Education, Culture, Sports, Science and Technology, the Chinese Academy of Sciences, the Chinese National Natural Science Foundation, the Finnish Society of Sciences and Letters, the Finnish Academy of Science and Letters, the Jenny and Antti Wihuri Foundation, the Development Association Mansikka ry, and the municipality of Varkaus.

Author Contributions M.J.V. and H.J.L. were responsible for the interpretation of the data, K.N. and J.H. organized the observational fieldwork, and the other authors contributed data points.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Valtonen.

Supplementary information

Supplementary Figure

The file contains Supplementary Figure 1. (PDF 671 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Valtonen, M., Lehto, H., Nilsson, K. et al. A massive binary black-hole system in OJ 287 and a test of general relativity. Nature 452, 851–853 (2008). https://doi.org/10.1038/nature06896

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06896

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing