Angiogenesis selectively requires the p110α isoform of PI3K to control endothelial cell migration


Phosphoinositide 3-kinases (PI3Ks) signal downstream of multiple cell-surface receptor types. Class IA PI3K isoforms1 couple to tyrosine kinases and consist of a p110 catalytic subunit (p110α, p110β or p110δ), constitutively bound to one of five distinct p85 regulatory subunits. PI3Ks have been implicated in angiogenesis2,3,4,5, but little is known about potential selectivity among the PI3K isoforms and their mechanism of action in endothelial cells during angiogenesis in vivo. Here we show that only p110α activity is essential for vascular development. Ubiquitous or endothelial cell-specific inactivation of p110α led to embryonic lethality at mid-gestation because of severe defects in angiogenic sprouting and vascular remodelling. p110α exerts this critical endothelial cell-autonomous function by regulating endothelial cell migration through the small GTPase RhoA. p110α activity is particularly high in endothelial cells and preferentially induced by tyrosine kinase ligands (such as vascular endothelial growth factor (VEGF)-A). In contrast, p110β in endothelial cells signals downstream of G-protein-coupled receptor (GPCR) ligands such as SDF-1α, whereas p110δ is expressed at low level and contributes only minimally to PI3K activity in endothelial cells. These results provide the first in vivo evidence for p110-isoform selectivity in endothelial PI3K signalling during angiogenesis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Inactivation of p110α in the germline (p110α D933A/D933A ) or in endothelial cells ( Tie2 Cre/p110α flox/flox ) leads to severe defects in angiogenic sprouting and vascular remodelling.
Figure 2: p110α is the main provider of PI3K signalling in endothelial cells under basal and VEGF-A-stimulated conditions.
Figure 3: p110α controls endothelial cell migration in vitro and in vivo.
Figure 4: p110α is a positive regulator of RhoA in endothelial cells.


  1. 1

    Vanhaesebroeck, B., Leevers, S. J., Panayotou, G. & Waterfield, M. D. Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem. Sci. 22, 267–272 (1997)

    CAS  Article  Google Scholar 

  2. 2

    Bi, L. et al. Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110alpha subunit of phosphoinositide 3-kinase. J. Biol. Chem. 274, 10963–10968 (1999)

    CAS  Article  Google Scholar 

  3. 3

    Jiang, B. H., Zheng, J. Z., Aoki, M. & Vogt, P. K. Phosphatidylinositol 3-kinase signaling mediates angiogenesis and expression of vascular endothelial growth factor in endothelial cells. Proc. Natl Acad. Sci. USA 97, 1749–1753 (2000)

    CAS  Article  ADS  Google Scholar 

  4. 4

    Geng, L. et al. A specific antagonist of the p110δ catalytic component of phosphatidylinositol 3′-kinase, IC486068, enhances radiation-induced tumor vascular destruction. Cancer Res. 64, 4893–4899 (2004)

    CAS  Article  Google Scholar 

  5. 5

    Puri, K. D. et al. Mechanisms and implications of phosphoinositide 3-kinaseδ in promoting neutrophil trafficking into inflamed tissue. Blood 103, 3448–3456 (2004)

    CAS  Article  Google Scholar 

  6. 6

    Vanhaesebroeck, B. et al. P110delta, a novel phosphoinositide 3-kinase in leukocytes. Proc. Natl Acad. Sci. USA 94, 4330–4335 (1997)

    CAS  Article  ADS  Google Scholar 

  7. 7

    Chantry, D. et al. p110delta, a novel phosphatidylinositol 3-kinase catalytic subunit that associates with p85 and is expressed predominantly in leukocytes. J. Biol. Chem. 272, 19236–19241 (1997)

    CAS  Article  Google Scholar 

  8. 8

    Sawyer, C. et al. Regulation of breast cancer cell chemotaxis by the phosphoinositide 3-kinase p110δ. Cancer Res. 63, 1667–1675 (2003)

    CAS  PubMed  Google Scholar 

  9. 9

    Lelievre, E. et al. Deficiency in the p110alpha subunit of PI3K results in diminished Tie2 expression and Tie2(-/-)-like vascular defects in mice. Blood 105, 3935–3938 (2005)

    CAS  Article  Google Scholar 

  10. 10

    Ueki, K., Algenstaedt, P., Mauvais-Jarvis, F. & Kahn, C. R. Positive and negative regulation of phosphoinositide 3-kinase-dependent signaling pathways by three different gene products of the p85α regulatory subunit. Mol. Cell. Biol. 20, 8035–8046 (2000)

    CAS  Article  Google Scholar 

  11. 11

    Foukas, L. C. et al. Critical role for the p110α phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature 441, 366–370 (2006)

    CAS  Article  ADS  Google Scholar 

  12. 12

    Lucitti, J. L. et al. Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development 134, 3317–3326 (2007)

    CAS  Article  Google Scholar 

  13. 13

    Kisanuki, Y. Y. et al. Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev. Biol. 230, 230–242 (2001)

    CAS  Article  Google Scholar 

  14. 14

    Bi, L., Okabe, I., Bernard, D. J. & Nussbaum, R. L. Early embryonic lethality in mice deficient in the p110β catalytic subunit of PI 3-kinase. Mamm. Genome 13, 169–172 (2002)

    CAS  PubMed  Google Scholar 

  15. 15

    Guillermet-Guibert, J. et al. The p110β isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110γ. Proc. Natl Acad. Sci. USA (in the press)

  16. 16

    Okkenhaug, K. et al. Impaired B and T cell antigen receptor signaling in p110δ PI 3-kinase mutant mice. Science 297, 1031–1034 (2002)

    CAS  ADS  Google Scholar 

  17. 17

    Dayanir, V., Meyer, R. D., Lashkari, K. & Rahimi, N. Identification of tyrosine residues in vascular endothelial growth factor receptor-2/FLK-1 involved in activation of phosphatidylinositol 3-kinase and cell proliferation. J. Biol. Chem. 276, 17686–17692 (2001)

    CAS  Article  Google Scholar 

  18. 18

    Gille, H. et al. A repressor sequence in the juxtamembrane domain of Flt-1 (VEGFR-1) constitutively inhibits vascular endothelial growth factor-dependent phosphatidylinositol 3′-kinase activation and endothelial cell migration. EMBO J. 19, 4064–4073 (2000)

    CAS  Article  Google Scholar 

  19. 19

    Gerber, H. P., Dixit, V. & Ferrara, N. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J. Biol. Chem. 273, 13313–13316 (1998)

    CAS  Article  Google Scholar 

  20. 20

    Adini, I. et al. RhoB controls Akt trafficking and stage-specific survival of endothelial cells during vascular development. Genes Dev. 17, 2721–2732 (2003)

    CAS  Article  Google Scholar 

  21. 21

    Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 (2003)

    CAS  Article  Google Scholar 

  22. 22

    Ruhrberg, C. et al. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev. 16, 2684–2698 (2002)

    CAS  Article  Google Scholar 

  23. 23

    Gerhardt, H. & Betsholtz, C. How do endothelial cells orientate? EXS 94, 3–15 (2005)

    Google Scholar 

  24. 24

    Worthylake, R. A., Lemoine, S., Watson, J. M. & Burridge, K. RhoA is required for monocyte tail retraction during transendothelial migration. J. Cell Biol. 154, 147–160 (2001)

    CAS  Article  Google Scholar 

  25. 25

    Hughes, S. & Chan-Ling, T. Roles of endothelial cell migration and apoptosis in vascular remodeling during development of the central nervous system. Microcirculation 7, 317–333 (2000)

    CAS  Article  Google Scholar 

  26. 26

    Bilancio, A. et al. Key role of the p110delta isoform of PI3K in B-cell antigen and IL-4 receptor signaling: comparative analysis of genetic and pharmacologic interference with p110δ function in B cells. Blood 107, 642–650 (2006)

    CAS  Article  Google Scholar 

  27. 27

    Lidington, E. A. et al. Conditional immortalization of growth factor-responsive cardiac endothelial cells from H-2K(b)-tsA58 mice. Am. J. Physiol. Cell Physiol. 282, C67–C74 (2002)

    CAS  Article  Google Scholar 

  28. 28

    Weis, S. et al. Src blockade stabilizes a Flk/cadherin complex, reducing edema and tissue injury following myocardial infarction. J. Clin. Invest. 113, 885–894 (2004)

    CAS  Article  Google Scholar 

  29. 29

    Cutillas, P. R. et al. Ultrasensitive and absolute quantification of the phosphoinositide 3-kinase/Akt signal transduction pathway by mass spectrometry. Proc. Natl Acad. Sci. USA 103, 8959–8964 (2006)

    CAS  Article  ADS  Google Scholar 

  30. 30

    Wells, C. M. & Ridley, A. J. Analysis of cell migration using the Dunn chemotaxis chamber and time-lapse microscopy. Methods Mol. Biol. 294, 31–41 (2005)

    PubMed  Google Scholar 

  31. 31

    Ren, X. D. & Schwartz, M. A. Determination of GTP loading on Rho. Methods Enzymol. 325, 264–272 (2000)

    CAS  Article  Google Scholar 

Download references


We thank F. Ramadani and K. Okkenhaug (Babraham Institute, Cambridge), E. Cernuda (Hospital Universitario Central de Asturias), T. Makinen (Cancer Research UK London Research Institute), K. Hodivala-Dilke, A. Reynolds and G. D’Amico (Institute of Cancer, Queen Mary, University of London), P. Villalonga (Universitat de les Illes Balears, Spain) and members of the Vanhaesebroeck laboratory (especially N. Osborne, C. See and M. Whitehead) for help and advice, E. Wagner (Research Institute of Molecular Pathology, Vienna), E. Dejana (Institute of Molecular Oncology, Milan), G. Balconi (Mario Negri Institute for Pharmacological Research, Milan), M. Yanagisawa (University of Texas Southwestern Medical Center, Dallas), D. Vestweber (Max-Planck Institute, Muenster), C. Rommel, M. Camps and T. Ruckle (Merck-Serono, Geneva) and Piramed (Slough, UK) for mice and reagents. Personal support was from EMBO (M.G., J.G.-G.), Cancer Research UK (M.G.) and the Fondation pour la Recherche Médicale and the European Union Marie Curie (J.G.-G.). Work in the Vanhaesebroeck laboratory was supported by the Ludwig Institute for Cancer Research Institute, the Biotechnology and Biological Sciences Research Council (BB/C505659/1), the Association for International Cancer Research, European Union (FP6-502935), Cancer Research UK and Barts and the London Charity. R.J.C. is supported by an Association for International Cancer Research grant to A.J.R. (07-0173). L.-K.P. and H.G. are supported by Cancer Research UK.

Author Contributions All authors designed research and analysed data. M.G., J.G.-G., L.C.F., L.-K.P., R.J.C., A.S., W.P., S.M. and P.R.C. performed research. M.G., H.G. and B.V. wrote the paper.

Author information



Corresponding authors

Correspondence to Holger Gerhardt or Bart Vanhaesebroeck.

Ethics declarations

Competing interests

B.V. is a consultant for PIramed Pharma.

Supplementary information

Supplementary information

The file contains Supplementary Methods with additional references and Supplementary Figures S1-S29 with Legends. (PDF 30710 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Graupera, M., Guillermet-Guibert, J., Foukas, L. et al. Angiogenesis selectively requires the p110α isoform of PI3K to control endothelial cell migration. Nature 453, 662–666 (2008).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing