Letter | Published:

Cladistic analysis of continuous modularized traits provides phylogenetic signals in Homo evolution

Nature volume 453, pages 775778 (05 June 2008) | Download Citation


Evolutionary novelties in the skeleton are usually expressed as changes in the timing of growth of features intrinsically integrated at different hierarchical levels of development1. As a consequence, most of the shape-traits observed across species do vary quantitatively rather than qualitatively2, in a multivariate space3 and in a modularized way4,5. Because most phylogenetic analyses normally use discrete, hypothetically independent characters6, previous attempts have disregarded the phylogenetic signals potentially enclosed in the shape of morphological structures. When analysing low taxonomic levels, where most variation is quantitative in nature, solving basic requirements like the choice of characters and the capacity of using continuous, integrated traits is of crucial importance in recovering wider phylogenetic information. This is particularly relevant when analysing extinct lineages, where available data are limited to fossilized structures. Here we show that when continuous, multivariant and modularized characters are treated as such, cladistic analysis successfully solves relationships among main Homo taxa. Our attempt is based on a combination of cladistics, evolutionary-development-derived selection of characters, and geometric morphometrics methods. In contrast with previous cladistic analyses of hominid phylogeny, our method accounts for the quantitative nature of the traits, and respects their morphological integration patterns. Because complex phenotypes are observable across different taxonomic groups and are potentially informative about phylogenetic relationships, future analyses should point strongly to the incorporation of these types of trait.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    & Morphological Integration (Univ. Chicago Press, Chicago, 1958)

  2. 2.

    The logical basis for the use of continuous characters in phylogenetic systematics. Cladistics 14, 221–228 (1998)

  3. 3.

    & in Morphology, Shape and Phylogeny (eds MacLeod, N. & Forey, P.) 1–7 (Taylor & Francis, London, 2002)

  4. 4.

    & Phenotypic Integration. Studying the Ecology and Evolution of Complex Phenotypes (Oxford Univ. Press, New York, 2004)

  5. 5.

    Integration, phylogeny, and the hominid cranial base. Am. J. Phys. Anthropol. 114, 273–297 (2001)

  6. 6.

    , & A numerical approach to phylogenetic systematics. Syst. Zool. 19, 172–189 (1970)

  7. 7.

    in Morphology, Shape and Phylogeny (eds MacLeod, N. & Forey, P.) 8–26 (Taylor & Francis, London, 2002)

  8. 8.

    On the simulation of the evolution of morphological shape under selection and drift. Palaeontol. Electron. 7, 1–28 (2004)

  9. 9.

    Morphological integration in the saddle-back tamarin (Saguinas fuscicolis) cranium. Am. Nat. 145, 63–89 (1995)

  10. 10.

    Problems with the use of cladistic analysis in palaeoanthropology. Homo 53, 225–234 (2003)

  11. 11.

    & in Phenotypic Integration: Studying the Ecology and Evolution of Complex Phenotypes (eds Pigliucci, M. & Preston, K.) 302–319 (Oxford Univ. Press, Oxford, 2004)

  12. 12.

    & Evolutionary relationships among early hominids. J. Hum. Evol. 23, 309–349 (1992)

  13. 13.

    , , & Geometric Morphometrics for Biologists (Elsevier, London, 2004)

  14. 14.

    , & The evolution and development of cranial form in Homo sapiens. Proc. Natl Acad. Sci. USA 99, 1134–1139 (2002)

  15. 15.

    , & TNT, a free program for phylogenetic analysis. Cladistics (in the press)

  16. 16.

    Inferring Phylogenies (Sinauer Associates, Sunderland, Massachusetts, 2004)

  17. 17.

    PHYLIP (Phylogeny Inference Package) v.3.67 (Department of Genome Sciences, University of Washington, Seattle, 2007)

  18. 18.

    & The human genus. Science 284, 65–71 (1999)

  19. 19.

    & in Handbook of Paleoanthropology (eds Henke, W., Hardt, T. & Tattersall, I.) 1575–1610 (Springer, Berlin and Heidelberg, 2007)

  20. 20.

    , & in Handbook of Paleoanthropology (eds Henke, W., Hardt, T. & Tattersall, I.) 1782–1806 (Springer, Berlin and Heidelberg, 2007)

  21. 21.

    et al. A new skull of early Homo from Dmanisi, Georgia. Science 297, 85–89 (2002)

  22. 22.

    in Handbook of Paleoanthropology (eds Henke, W., Hardt, T. & Tattersall, I.) 1695–1715 (Springer, Berlin and Heidelberg, 2007)

  23. 23.

    in Paleoclimate and Evolution with Emphasis on Human Origins (eds Vrba, E. S., Denton, G. H., Partridge, T. C. & Burckle, L. H.) 524–531 (Yale Univ. Press, New Haven, 1995)

  24. 24.

    , , & The Sima de los Huesos crania (Sierra de Atapuerca, Spain). A comparative study. J. Hum. Evol. 33, 219–281 (1997)

  25. 25.

    et al. Neandertal evolutionary genetics: mitochondrial DNA data from the Iberian Peninsula. Mol. Biol. Evol. 22, 1077–1081 (2005)

  26. 26.

    & Surprisingly rapid growth in Neanderthals. Nature 428, 936–939 (2004)

  27. 27.

    & Inferring hominoid and early hominid phylogeny using craniodental characters: the role of fossil taxa. J. Hum. Evol. 47, 399–452 (2004)

  28. 28.

    et al. Implications of new early Homo fossils from Ileret, east of Lake Turkana, Kenya. Nature 448, 688–691 (2007)

  29. 29.

    Paleophylogeography: the tempo of geographic differentiation in marmots (Marmota). J. Mammal. 84, 369–384 (2003)

  30. 30.

    , & TNT: Tree analysis using New Technology v.1.1 (Willi Hennig Society, New York, 2008)

  31. 31.

    , & Continuous characters analyzed as such. Cladistics 22, 589–601 (2007)

Download references


We thank P. Goloboff, M. Hernández, C. Lalueza, N. Martínez-Abadías, D. Pol and F. Ramírez-Rozzi for reading and discussing previous versions of this paper. We also thank R. E. Ambrosetto, R. Nicoletti and B. Nicoletti for their assistance during this work. The program TNT is freely available, thanks to a subsidy from the Willi Hennig Society.

Author information


  1. Unidad de Investigación de Diversidad, Sistemática y Evolución, Centro Nacional Patagónico, Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Boulevard Brown 2825, U9120ACF Puerto Madryn, Argentina

    • Rolando González-José
  2. Museo Paleontológico Egidio Feruglio, Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Avenida Fontana 140, U9100GYO, Trelew, Argentina

    • Ignacio Escapa
    •  & Rubén Cúneo
  3. Laboratório de Estudos Evolutivos Humanos, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, CP 11461, 05422.970 São Paulo, Brazil

    • Walter A. Neves
  4. Departamento Científico de Antropología del Museo de La Plata, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, 1900 La Plata, Argentina

    • Héctor M. Pucciarelli


  1. Search for Rolando González-José in:

  2. Search for Ignacio Escapa in:

  3. Search for Walter A. Neves in:

  4. Search for Rubén Cúneo in:

  5. Search for Héctor M. Pucciarelli in:

Corresponding author

Correspondence to Rolando González-José.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    The file contains Supplementary Figure 1 and Supplementary Data including the synapomorphies for the MP tree (pages 6-12), SI text file corresponding to Morphologika files for the traits: FCB_Morphologika file (pages 13-16), FR_Morphologika file (pages 17-22), NG_Morphologika file (pages 23-30), MA_Morphologika file (pages 31-41).

About this article

Publication history






Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.