Small phonon contribution to the photoemission kink in the copper oxide superconductors


Despite over two decades of intense research efforts, the origin of high-temperature superconductivity in the copper oxides remains elusive. Angle-resolved photoemission spectroscopy experiments1,2 have revealed a kink in the dispersion relations (energy versus wavevector) of electronic states in the copper oxides at binding energies of 50-80 meV, raising the hope that this anomaly could be a key to understanding high-temperature superconductivity. The kink is often interpreted in terms of interactions between the electrons and a bosonic field. Although there is no consensus on the nature of the bosons (or even whether a boson model is appropriate), both phonons1 and spin fluctuations2 have been proposed as possible candidates. Here we report first-principles calculations of the role of phonons and the electron–phonon interaction in the photoemission spectra of La2 - xSr x CuO4. Our calculations within the standard formalism demonstrate that the phonon-induced renormalization of the electron energies and the Fermi velocity is almost one order of magnitude smaller than the effect observed in photoemission experiments. Therefore, our result rules out electron–phonon interaction in bulk La2 - xSr x CuO4 as the exclusive origin of the measured kink. Our conclusions are consistent with those reached independently in a recent study3 of the related compound YBa2Cu3O7.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Phonons of La 2 -  x Sr x CuO 4 at optimal doping ( x = 0.15).
Figure 2: Calculated electron self-energy in LSCO due to the electron–phonon interaction.
Figure 3: Electron–phonon matrix elements.
Figure 4: Comparison between theory and experiment.


  1. 1

    Lanzara, A. et al. Evidence for ubiquitous strong electron–phonon coupling in high-temperature superconductors. Nature 412, 510–514 (2001)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Johnson, P.-D. et al. Doping and temperature dependence of the mass enhancement observed in the cuprate Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 87, 177007 (2001)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Heid, R., Bohnen, K.-P., Zeyher, R. & Manske, D. Momentum dependence of the electron-phonon coupling and self-energy effects in YBa2Cu3O7 within the local density approximation. Phys. Rev. Lett. (in the press); preprint at 〈

  4. 4

    Savrasov, S.-Y. & Andersen, O.-K. Linear-response calculation of the electron-phonon coupling in doped CaCuO2 . Phys. Rev. Lett. 77, 4430–4433 (1996)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Bohnen, K.-P., Heid, R. & Krauss, M. Phonon dispersion and electron-phonon interaction for YBa2Cu3O7 from first-principles calculations. Europhys. Lett. 64, 104–110 (2003)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Sahrakorpi, S., Lindroos, M., Markiewicz, R.-S. & Bansil, A. Evolution of midgap states and residual three dimensionality in La2-xSrxCuO4 . Phys. Rev. Lett. 95, 157601 (2005)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Zhou, X.-J. et al. Dichotomy between nodal and antinodal quasiparticles in underdoped (La2–xSrx)CuO4 superconductors. Phys. Rev. Lett. 92, 187001 (2004)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Perdew, J.-P. & Wang, Y. Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. Phys. Rev. B 46, 12947–12954 (1992)

    CAS  Article  Google Scholar 

  10. 10

    Ihm, J., Zunger, A. & Cohen, M.-L. Momentum-space formalism for the total energy of solids. J. Phys. C 12, 4409–4422 (1979)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Ino, A. et al. Doping-dependent evolution of the electronic structure of La2-xSrxCuO4 in the superconducting and metallic phases. Phys. Rev. B 65, 094504 (2002)

    ADS  Article  Google Scholar 

  12. 12

    Pickett, W.-E. Electronic structure of the high-temperature oxide superconductors. Rev. Mod. Phys. 61, 433–512 (1989)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Baroni, S., De Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001)

    ADS  CAS  Article  Google Scholar 

  14. 14

    McQueeney, R.-J. et al. Anomalous dispersion of LO phonons in La1. 85Sr0. 15CuO4 at low temperatures. Phys. Rev. Lett. 82, 628–631 (1999)

    ADS  CAS  Article  Google Scholar 

  15. 15

    McQueeney, R.-J., Sarrao, J.-L., Pagliuso, P.-G., Stephens, P.-W. & Osborn, R. Mixed lattice and electronic states in high-temperature superconductors. Phys. Rev. Lett. 87, 077001 (2001)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Pintschovius, L. et al. Lattice dynamical studies of HTSC materials. Physica C 185, 156–161 (1991)

    ADS  Article  Google Scholar 

  17. 17

    Falter, C. Phonons, electronic charge response and electron-phonon interaction in the high-temperature superconductors. Phys. Status Solidi B 242, 78–117 (2005)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Hedin, L. & Lundqvist, S. in Solid State Physics Vol. 15 (eds Seitz, F., Turnbull, F. & Ehrenreich, H.) 1–181 (Academic, New York, 1969)

    Google Scholar 

  19. 19

    Grimvall, G. The Electron-Phonon Interaction in Metals Chs 3 5 (North-Holland, New York, 1981)

    Google Scholar 

  20. 20

    Allen, P.-B. & Mitrovich, B. in Solid State Physics Vol. 37 (eds Seitz, F., Turnbull, F. & Ehrenreich, H.) 1–92 (Academic, New York, 1982)

    Google Scholar 

  21. 21

    Valla, T., Fedorov, A.-V., Lee, J., Davis, J.-C. & Gu, J.-D. The ground state of the pseudogap in cuprate superconductors. Science 314, 1914–1916 (2006)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Chen, X.-K., Irwin, J.-C., Trodahl, H.-J., Kimura, T. & Kishio, K. Investigation of the superconducting gap in La2-xSrxCuO4 by Raman spectroscopy. Phys. Rev. Lett. 73, 3290–3293 (1994)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Marzari, N. & Vanderbilt, D. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12847–12865 (1997)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Giustino, F., Yates, J.-R., Souza, I., Cohen, M.-L. & Louie, S.-G. Electron-phonon interaction via electronic and lattice Wannier functions: superconductivity in boron-doped diamond reexamined. Phys. Rev. Lett. 98, 047005 (2007)

    ADS  Article  Google Scholar 

  25. 25

    Giustino, F., Cohen, M.-L. & Louie, S.-G. Electron-phonon interaction using Wannier functions. Phys. Rev. B 76, 165108 (2007)

    ADS  Article  Google Scholar 

  26. 26

    Eschrig, M. & Norman, M.-R. Neutron resonance: modeling photoemission and tunneling data in the superconducting state of Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 85, 3261–3264 (2000)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Farid, B. On the break in the single-particle energy dispersion and the universal nodal Fermi velocity in the high-temperature copper oxide superconductors. Phil. Mag. 84, 909–955 (2004)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Phillips, J. C. Self-organized networks and lattice effects in high-temperature superconductors. Phys. Rev. B 75, 214503 (2007)

    ADS  Article  Google Scholar 

  29. 29

    Meevasana, W. et al. Doping dependence of the coupling of electrons to bosonic modes in the single-layer high-temperature Bi2Sr2CuO6 superconductor. Phys. Rev. Lett. 96, 157003 (2006)

    ADS  CAS  Article  Google Scholar 

Download references


The authors thank Z. X. Shen, A. Lanzara, Y.-W. Son, and C.-H. Park for discussions. This work was supported by the National Science Foundation and by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy. Computational resources were provided by NPACI and NERSC. Part of the calculations were performed using modified versions of the packages Wannier90 and Quantum-ESPRESSO. The Fermi surfaces were rendered using the program XCrySDen (version 1.4.1).

Author information



Corresponding author

Correspondence to Steven G. Louie.

Supplementary information

Supplementary information

This files contains Supplementary Discussion, Supplementary References and Supplementary Figure 1-3 including legends. (PDF 2897 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Giustino, F., Cohen, M. & Louie, S. Small phonon contribution to the photoemission kink in the copper oxide superconductors. Nature 452, 975–978 (2008).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.