Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Thermodynamic control by frequent quantum measurements


Heat flow between a large thermal ‘bath’ and a smaller system brings them progressively closer to thermal equilibrium while increasing their entropy1. Fluctuations involving a small fraction of a statistical ensemble of systems interacting with the bath result in deviations from this trend. In this respect, quantum and classical thermodynamics are in agreement1,2,3,4,5. Here we predict a different trend in a purely quantum mechanical setting: disturbances of thermal equilibrium between two-level systems (TLSs) and a bath6, caused by frequent, brief quantum non-demolition7,8,9,10 measurements of the TLS energy states. By making the measurements increasingly frequent, we encounter first the anti-Zeno regime and then the Zeno regime (namely where the TLSs’ relaxation respectively speeds up and slows down11,12,13,14,15). The corresponding entropy and temperature of both the system and the bath are then found to either decrease or increase depending only on the rate of observation, contrary to the standard thermodynamical rules that hold for memory-less (Markov) baths2,5. From a practical viewpoint, these anomalies may offer the possibility of very fast control of heat and entropy in quantum systems, allowing cooling and state purification over an interval much shorter than the time needed for thermal equilibration or for a feedback control loop.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: System and bath evolution as a function of time.
Figure 2: Maximal heating and cooling of the system.


  1. 1

    Landau, L. & Lifshitz, E. Statistical Physics 3rd edn Part 1 (Pergamon, 1980)

    MATH  Google Scholar 

  2. 2

    Spohn, H. Entropy production for quantum dynamical semigroups. J. Math. Phys. 19, 1227–1230 (1978)

    MathSciNet  Article  ADS  Google Scholar 

  3. 3

    Alicki, R. The quantum open system as a model of the heat engine. J. Phys. A 12, L103–L107 (1979)

    Article  ADS  Google Scholar 

  4. 4

    Jarzynski, C. Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690–2693 (1997)

    CAS  Article  ADS  Google Scholar 

  5. 5

    Lindblad, G. Expectations and entropy inequalities for finite quantum systems. Commun. Math. Phys. 39, 111–119 (1974)

    MathSciNet  Article  ADS  Google Scholar 

  6. 6

    Gelman, D. & Kosloff, R. Simulating dissipative phenomena with a random phase thermal wavefunctions, high temperature application of the Surrogate Hamiltonian approach. Chem. Phys. Lett. 381, 129–138 (2003)

    CAS  Article  ADS  Google Scholar 

  7. 7

    Zurek, W. H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003)

    MathSciNet  Article  ADS  Google Scholar 

  8. 8

    Braginsky, V. & Khalili, F. Quantum Measurement (Cambridge Univ. Press, Cambridge, 1995)

    MATH  Google Scholar 

  9. 9

    Barnett, S. Turning on quantum taps. Nature 362, 113 (1993)

    Article  ADS  Google Scholar 

  10. 10

    Haroche, S. & Raimond, J. Exploring the Quantum: Atoms, Cavities, and Photons (Oxford Univ. Press, Oxford, 2006)

    Book  Google Scholar 

  11. 11

    Misra, B. & Sudarshan, E. C. G. Zeno’s paradox in quantum theory. J. Math. Phys. 18, 756–763 (1977)

    MathSciNet  Article  ADS  Google Scholar 

  12. 12

    Lane, A. M. Decay at early times - larger or smaller than the golden rule. Phys. Lett. 99A, 359–360 (1983)

    CAS  Article  ADS  Google Scholar 

  13. 13

    Kofman, A. G. & Kurizki, G. Acceleration of quantum decay processes by frequent observations. Nature 405, 546–550 (2000)

    CAS  Article  ADS  Google Scholar 

  14. 14

    Facchi, P. & Pascazio, S. Quantum Zeno and inverse quantum Zeno effects. Prog. Opt. 42, 147–217 (2001)

    Article  ADS  Google Scholar 

  15. 15

    Kofman, A. G. & Kurizki, G. Unified theory of dynamically suppressed qubit decoherence in thermal baths. Phys. Rev. Lett. 93, 130406 (2004)

    CAS  Article  ADS  Google Scholar 

  16. 16

    Schulman, L. S. & Gaveau, B. Ratcheting up energy by means of measurement. Phys. Rev. Lett. 97, 240405 (2006)

    CAS  Article  ADS  Google Scholar 

  17. 17

    Allahverdyan, A. E. & Nieuwenhuizen, T. M. Extraction of work from a single thermal bath in the quantum regime. Phys. Rev. Lett. 85, 1799–1802 (2000)

    CAS  Article  ADS  Google Scholar 

  18. 18

    Allahverdyan, A. E., Gracià, R. S. & Nieuwenhuizen, T. M. Bath-assisted cooling of spins. Phys. Rev. Lett. 93, 260404 (2004)

    CAS  Article  ADS  Google Scholar 

  19. 19

    Cohen-Tannoudji, C., Dupont-Roc, J. & Grynberg, G. Atom-Photon Interactions (Wiley, New York, 1992)

    Google Scholar 

  20. 20

    Scully, M. O. Extracting work from a single thermal bath via quantum negentropy. Phys. Rev. Lett. 87, 220601 (2001)

    CAS  Article  ADS  Google Scholar 

  21. 21

    Beck, M., Jäckle, A., Worth, G. & Meyer, H.-D. The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets. Phys. Rep. 324, 1–105 (2000)

    CAS  Article  ADS  Google Scholar 

  22. 22

    Nest, M. & Meyer, H. Dissipative quantum dynamics of anharmonic oscillators with the multiconfiguration time-dependent Hartree method. J. Chem. Phys. 119, 24–33 (2003)

    CAS  Article  ADS  Google Scholar 

  23. 23

    Stelmachovic, P. & Buzek, V. Dynamics of open quantum systems initially entangled with environment: Beyond the Kraus representation. Phys. Rev. A 64, 062106 (2001)

    Article  ADS  Google Scholar 

  24. 24

    Scully, M. O., Zubairy, M. S., Agarwal, G. S. & Walther, H. Extracting work from a single heat bath via vanishing quantum coherence. Science 299, 862–864 (2003)

    CAS  Article  ADS  Google Scholar 

Download references


We acknowledge the support of DIP, GIF and EC (SCALA IP and MIDAS STREP).

Author information



Corresponding author

Correspondence to Gershon Kurizki.

Supplementary information

Supplementary information

The file contains Supplementary Notes. (PDF 252 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Erez, N., Gordon, G., Nest, M. et al. Thermodynamic control by frequent quantum measurements. Nature 452, 724–727 (2008).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing