Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Atmospheric oxidation capacity sustained by a tropical forest


Terrestrial vegetation, especially tropical rain forest, releases vast quantities of volatile organic compounds (VOCs) to the atmosphere1,2,3, which are removed by oxidation reactions and deposition of reaction products4,5,6. The oxidation is mainly initiated by hydroxyl radicals (OH), primarily formed through the photodissociation of ozone4. Previously it was thought that, in unpolluted air, biogenic VOCs deplete OH and reduce the atmospheric oxidation capacity5,6,7,8,9,10. Conversely, in polluted air VOC oxidation leads to noxious oxidant build-up by the catalytic action of nitrogen oxides5,6,7,8,9,10 (NOx = NO + NO2). Here we report aircraft measurements of atmospheric trace gases performed over the pristine Amazon forest. Our data reveal unexpectedly high OH concentrations. We propose that natural VOC oxidation, notably of isoprene, recycles OH efficiently in low-NOx air through reactions of organic peroxy radicals. Computations with an atmospheric chemistry model and the results of laboratory experiments suggest that an OH recycling efficiency of 40–80 per cent in isoprene oxidation may be able to explain the high OH levels we observed in the field. Although further laboratory studies are necessary to explore the chemical mechanism responsible for OH recycling in more detail, our results demonstrate that the biosphere maintains a remarkable balance with the atmospheric environment.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: OH recycling.
Figure 2: Model calculations (background) and measurements (circles) of HO x radicals over Suriname (4° N, 56° W) in October 2005.
Figure 3: Difference in OH in the boundary layer, calculated by including enhanced OH recycling in the model.


  1. Guenther, A. et al. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 6, 3181–3210 (2006)

    Article  CAS  ADS  Google Scholar 

  2. Kesselmeier, J. & Staudt, M. Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology. J. Atmos. Chem. 33, 23–88 (1999)

    Article  CAS  Google Scholar 

  3. Goldstein, A. H. & Galbally, I. E. Known and unexplored organic constituents in the Earth’s atmosphere. Environ. Sci. Technol. 41, 1515–1521 (2007)

    ADS  Google Scholar 

  4. Levy, H. Normal atmosphere: large radical and formaldehyde concentrations predicted. Science 173, 141–143 (1971)

    Article  CAS  ADS  Google Scholar 

  5. Wang, Y., Jacob, D. J. & Logan, J. A. Global simulation of tropospheric O3-NOx-hydrocarbon chemistry, 3. Origin of tropospheric ozone and effects of non-methane hydrocarbons. J. Geophys. Res. 103, 10757–10767 (1998)

    Article  CAS  ADS  Google Scholar 

  6. Lelieveld, J., Peters, W., Dentener, F. J. & Krol, M. Stability of tropospheric hydroxyl chemistry. J. Geophys. Res. 107 10.1029/2002JD002272 (2002)

  7. Lawrence, M. G. et al. A model for studies of tropospheric photochemistry: description, global distribution and evaluation. J. Geophys. Res. 104, 26245–26278 (1999)

    Article  CAS  ADS  Google Scholar 

  8. Granier, C., Petron, G., Müller, J.-F. & Brasseur, G. The impact of natural and anthropogenic hydrocarbons on the tropospheric budget of carbon monoxide. Atmos. Environ. 34, 5255–5270 (2000)

    Article  CAS  ADS  Google Scholar 

  9. von Kuhlmann, R., Lawrence, M. G., Pöschl, U. & Crutzen, P. J. Sensitivities in global scale modelling of isoprene. Atmos. Chem. Phys. 4, 1–17 (2004)

    Article  CAS  ADS  Google Scholar 

  10. Jöckel, P. et al. The atmospheric chemistry general circulation model ECHAM5/MESSy: Consistent simulation of ozone from the surface to the mesosphere. Atmos. Chem. Phys. 6, 5067–5104 (2006)

    Article  ADS  Google Scholar 

  11. Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281, 237–240 (1998)

    Article  CAS  ADS  Google Scholar 

  12. Terry, G. M., Stokes, N. J., Hewitt, C. N. & Mansfield, T. A. Exposure to isoprene promotes flowering in plants. J. Exp. Bot. 46, 1629–1631 (1995)

    Article  CAS  Google Scholar 

  13. Wildermuth, M. C. & Fall, R. Light-dependent isoprene emission. Plant Physiol. 112, 171–182 (1996)

    Article  CAS  Google Scholar 

  14. Singsaas, E. L., Lerdau, M., Winter, K. & Sharkey, T. D. Isoprene increases thermotolerance of isoprene emitting species. Plant Physiol. 115, 1413–1420 (1997)

    Article  CAS  Google Scholar 

  15. Penuelas, J., Lluisa, J., Asensio, D. & Munne-Bosch, S. Linking isoprene with plant thermotolerance, antioxidants and monoterpene emissions. Plant Cell Environ. 28, 278–286 (2005)

    Article  CAS  Google Scholar 

  16. Pöschl, U., von Kuhlmann, R., Poisson, N. & Crutzen, P. J. Development and intercomparison of condensed isoprene oxidation mechanisms for global atmospheric modelling. J. Atmos. Chem. 37, 29–52 (2000)

    Article  Google Scholar 

  17. Sander, R., Kerkweg, A., Jöckel, P. & Lelieveld, J. Technical note: The new comprehensive atmospheric chemistry module MECCA. Atmos. Chem. Phys. 5, 445–450 (2005)

    Article  CAS  ADS  Google Scholar 

  18. Saunders, S. M., Jenkin, M. E., Derwent, R. G. & Pilling, M. J. Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds. Atmos. Chem. Phys. 3, 161–180 (2003)

    Article  CAS  ADS  Google Scholar 

  19. Hasson, A. S., Tyndall, G. S. & Orlando, J. J. A product yield study of the reaction of HO2 radicals with ethyl peroxy (C2H5O2), acetyl peroxy (CH3C(O)O2), and acetonyl peroxy (CH3C(O)CH2O2) radicals. J. Phys. Chem. 108, 5979–5989 (2004)

    Article  CAS  Google Scholar 

  20. Jenkin, M. E., Hurley, M. D. & Wallington, T. J. Investigation of the radical product channel of the CH3COO2 + HO2 reaction in the gas phase. Phys. Chem. Chem. Phys. 9, 3149–3162 (2007)

    Article  CAS  Google Scholar 

  21. Thornton, J. A. et al. Ozone production rates as a function of NOx abundances and HOx production rates in the Nashville urban plume. J. Geophys. Res. 107 doi: 10.1029/2001JD000932 (2002)

  22. Kuhn, U. et al. Isoprene and monoterpene fluxes from Central Amazonian rainforest inferred from tower-based and airborne measurements, and implications on the atmospheric chemistry and the carbon budget. Atmos. Chem. Phys. 7, 2855–2879 (2007)

    Article  CAS  ADS  Google Scholar 

  23. Tan, D. et al. HOx budgets in a deciduous forest: Results from the PROPHET summer 1998 campaign. J. Geophys. Res. 106, 24407–24427 (2001)

    Article  CAS  ADS  Google Scholar 

  24. Karl, T. et al. The tropical forest and fire emissions experiment: Emission, chemistry and transport of biogenic volatile organic compounds in the lower atmosphere over Amazonia. J. Geophys. Res. 112 10.1029/2007JD008539 (2007)

  25. Williams, J., Yassaa, N., Bartenbach, S. & Lelieveld, J. Mirror image hydrocarbons from tropical and boreal forests. Atmos. Chem. Phys. 7, 973–980 (2007)

    Article  CAS  ADS  Google Scholar 

  26. Di Carlo, P. et al. Missing OH reactivity in a forest: Evidence for unknown reactive biogenic VOCs. Science 304, 722–725 (2004)

    Article  CAS  ADS  Google Scholar 

  27. Goldstein, A. H. et al. Forest thinning experiment confirms ozone deposition to forest canopy is dominated by reaction with biogenic VOCs. Geophys. Res. Lett. 31 10.1029/2004GL021259 (2004)

  28. Ciccioli, P. et al. Emission of reactive terpene compounds from orange orchards and their removal by within-canopy processes. J. Geophys. Res. 104, 8077–8094 (1999)

    Article  CAS  ADS  Google Scholar 

  29. Ganzeveld, L. N. et al. Global soil-biogenic NOx emissions and the role of canopy processes. J. Geophys. Res. 107 doi: 10.1029/2001JD001289 (2002)

Download references


We are grateful to the GABRIEL campaign team: S. Bartenbach, C. Becker, H. Bozem, S. Engemann, H. Franke, S. Gebhardt, C. Gurk, H. Hoeseni, R. Hofmann, T. Klüpfel, R. Königstedt, D. Kubistin, R. Maser, D. Noorden, U. Parchatka, D. Rodrigues, M. Rudolf, B. Scheeren, C. Schiller, V. Sinha, A. Stickler, B. Tan, P. van Velthoven, T. Warsodikromo and G. Wesenhagen. We thank the Modular Earth Submodel System (MESSy) team for model support, in particular P. Jöckel and H. Tost, and P. J. Crutzen for comments on the manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to J. Lelieveld.

Supplementary information

Supplementary information

The file contains Supplementary Methods and Results, Supplementary Figures S1-S4 with Legends, Supplementary Table S1 and additional references. (PDF 1461 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lelieveld, J., Butler, T., Crowley, J. et al. Atmospheric oxidation capacity sustained by a tropical forest. Nature 452, 737–740 (2008).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing