Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A nuclear receptor-like pathway regulating multidrug resistance in fungi

Abstract

Multidrug resistance (MDR) is a serious complication during treatment of opportunistic fungal infections that frequently afflict immunocompromised individuals, such as transplant recipients and cancer patients undergoing cytotoxic chemotherapy. Improved knowledge of the molecular pathways controlling MDR in pathogenic fungi should facilitate the development of novel therapies to combat these intransigent infections. MDR is often caused by upregulation of drug efflux pumps by members of the fungal zinc-cluster transcription-factor family (for example Pdr1p orthologues). However, the molecular mechanisms are poorly understood. Here we show that Pdr1p family members in Saccharomyces cerevisiae and the human pathogen Candida glabrata directly bind to structurally diverse drugs and xenobiotics, resulting in stimulated expression of drug efflux pumps and induction of MDR. Notably, this is mechanistically similar to regulation of MDR in vertebrates by the PXR nuclear receptor, revealing an unexpected functional analogy of fungal and metazoan regulators of MDR. We have also uncovered a critical and specific role of the Gal11p/MED15 subunit of the Mediator co-activator and its activator-targeted KIX domain in antifungal/xenobiotic-dependent regulation of MDR. This detailed mechanistic understanding of a fungal nuclear receptor-like gene regulatory pathway provides novel therapeutic targets for the treatment of multidrug-resistant fungal infections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pdr1p is a xenobiotic receptor.
Figure 2: Requirement for the Gal11p Mediator subunit and its KIX domain in Pdr1p/Pdr3p-dependent transcription of target genes and MDR.
Figure 3: Structure of the Gal11p KIX domain and structural/mutational analysis of the Pdr1pAD-Gal11p KIX interface.
Figure 4: Dissection of the molecular mechanism of drug resistance in C. glabrata.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

The NMR structure is deposited in the Protein Data Bank under accession number 2k0n.

References

  1. Richardson, M. D. Changing patterns and trends in systemic fungal infections. J. Antimicrob. Chemother. 56, i5–i11 (2005)

    Article  CAS  Google Scholar 

  2. Aperis, G., Myriounis, N., Spanakis, E. K. & Mylonakis, E. Developments in the treatment of candidiasis: more choices and new challenges. Expert Opin. Investig. Drugs 15, 1319–1336 (2006)

    Article  CAS  Google Scholar 

  3. Pfaller, M. A. & Diekema, D. J. Epidemiology of invasive candidiasis: a persistent public health problem. Clin. Microbiol. Rev. 20, 133–163 (2007)

    Article  CAS  Google Scholar 

  4. Wisplinghoff, H. et al. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis. 39, 309–317 (2004)

    Article  Google Scholar 

  5. Klepser, M. E. Candida resistance and its clinical relevance. Pharmacotherapy 26, 68S–75S (2006)

    Article  CAS  Google Scholar 

  6. Sipos, G. & Kuchler, K. Fungal ATP-binding cassette (ABC) transporters in drug resistance & detoxification. Curr. Drug Targets 7, 471–481 (2006)

    Article  CAS  Google Scholar 

  7. Balzi, E. et al. The multidrug resistance gene PDR1 from Saccharomyces cerevisiae . J. Biol. Chem. 262, 16871–16879 (1987)

    CAS  PubMed  Google Scholar 

  8. Meyers, S. et al. Interaction of the yeast pleiotropic drug resistance genes PDR1 and PDR5. Curr. Genet. 21, 431–436 (1992)

    Article  CAS  Google Scholar 

  9. Balzi, E. et al. PDR5, a novel yeast multidrug resistance conferring transporter controlled by the transcription regulator PDR1. J. Biol. Chem. 269, 2206–2214 (1994)

    CAS  PubMed  Google Scholar 

  10. Katzmann, D. J. et al. Transcriptional control of the yeast PDR5 gene by the PDR3 gene product. Mol. Cell. Biol. 14, 4653–4661 (1994)

    Article  CAS  Google Scholar 

  11. Delaveau, T. et al. PDR3, a new yeast regulatory gene, is homologous to PDR1 and controls the multidrug resistance phenomenon. Mol. Gen. Genet. 244, 501–511 (1994)

    Article  CAS  Google Scholar 

  12. Decottignies, A. et al. Identification and characterization of SNQ2, a new multidrug ATP binding cassette transporter of the yeast plasma membrane. J. Biol. Chem. 270, 18150–18157 (1995)

    Article  CAS  Google Scholar 

  13. Katzmann, D. J. et al. Expression of an ATP-binding cassette transporter-encoding gene (YOR1) is required for oligomycin resistance in Saccharomyces cerevisiae . Mol. Cell. Biol. 15, 6875–6883 (1995)

    Article  CAS  Google Scholar 

  14. van den Hazel, H. B. et al. PDR16 and PDR17, two homologous genes of Saccharomyces cerevisiae, affect lipid biosynthesis and resistance to multiple drugs. J. Biol. Chem. 274, 1934–1941 (1999)

    Article  CAS  Google Scholar 

  15. Moye-Rowley, W. S. Transcriptional control of multidrug resistance in the yeast Saccharomyces . Prog. Nucleic Acid Res. Mol. Biol. 73, 251–279 (2003)

    Article  CAS  Google Scholar 

  16. Mamnun, Y. M., Schuller, C. & Kuchler, K. Expression regulation of the yeast PDR5 ATP-binding cassette (ABC) transporter suggests a role in cellular detoxification during the exponential growth phase. FEBS Lett. 559, 111–117 (2004)

    Article  CAS  Google Scholar 

  17. Gao, C., Wang, L., Milgrom, E. & Shen, W. C. On the mechanism of constitutive Pdr1 activator-mediated PDR5 transcription in Saccharomyces cerevisiae: evidence for enhanced recruitment of coactivators and altered nucleosome structures. J. Biol. Chem. 279, 42677–42686 (2004)

    Article  CAS  Google Scholar 

  18. Lucau-Danila, A. et al. Early expression of yeast genes affected by chemical stress. Mol. Cell. Biol. 25, 1860–1868 (2005)

    Article  CAS  Google Scholar 

  19. Alenquer, M., Tenreiro, S. & Sa-Correia, I. Adaptive response to the antimalarial drug artesunate in yeast involves Pdr1p/Pdr3p-mediated transcriptional activation of the resistance determinants TPO1 and PDR5. FEMS Yeast Res. 6, 1130–1139 (2006)

    Article  CAS  Google Scholar 

  20. Fardeau, V. et al. The central role of PDR1 in the foundation of yeast drug resistance. J. Biol. Chem. 282, 5063–5074 (2007)

    Article  CAS  Google Scholar 

  21. Vermitsky, J. P. & Edlind, T. D. Azole resistance in Candida glabrata: coordinate upregulation of multidrug transporters and evidence for a Pdr1-like transcription factor. Antimicrob. Agents Chemother. 48, 3773–3781 (2004)

    Article  CAS  Google Scholar 

  22. Tsai, H. F., Krol, A. A., Sarti, K. E. & Bennett, J. E. Candida glabrata PDR1, a transcriptional regulator of a pleiotropic drug resistance network, mediates azole resistance in clinical isolates and petite mutants. Antimicrob. Agents Chemother. 50, 1384–1392 (2006)

    Article  CAS  Google Scholar 

  23. Vermitsky, J. P. et al. Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome-wide expression studies. Mol. Microbiol. 61, 704–722 (2006)

    Article  CAS  Google Scholar 

  24. Kliewer, S. A., Goodwin, B. & Willson, T. M. The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. Endocr. Rev. 23, 687–702 (2002)

    Article  CAS  Google Scholar 

  25. Willson, T. M. & Kliewer, S. A. PXR, CAR and drug metabolism. Nature Rev. Drug Discov. 1, 259–266 (2002)

    Article  CAS  Google Scholar 

  26. Näär, A. M., Lemon, B. D. & Tjian, R. Transcriptional coactivator complexes. Annu. Rev. Biochem. 70, 475–501 (2001)

    Article  Google Scholar 

  27. Kornberg, R. D. Mediator and the mechanism of transcriptional activation. Trends Biochem. Sci. 30, 235–239 (2005)

    Article  CAS  Google Scholar 

  28. Kean, L. S. et al. Plasma membrane translocation of fluorescent-labeled phosphatidylethanolamine is controlled by transcription regulators, PDR1 and PDR3. J. Cell Biol. 138, 255–270 (1997)

    Article  CAS  Google Scholar 

  29. Gulshan, K., Rovinsky, S. A., Coleman, S. T. & Moye-Rowley, W. S. Oxidant-specific folding of Yap1p regulates both transcriptional activation and nuclear localization. J. Biol. Chem. 280, 40524–40533 (2005)

    Article  CAS  Google Scholar 

  30. Novatchkova, M. & Eisenhaber, F. Linking transcriptional mediators via the GACKIX domain super family. Curr. Biol. 14, R54–R55 (2004)

    Article  CAS  Google Scholar 

  31. Yang, F. et al. An ARC/Mediator subunit required for SREBP control of cholesterol and lipid homeostasis. Nature 442, 700–704 (2006)

    Article  ADS  CAS  Google Scholar 

  32. Goodman, R. H. & Smolik, S. CBP/p300 in cell growth, transformation, and development. Genes Dev. 14, 1553–1577 (2000)

    CAS  PubMed  Google Scholar 

  33. Kasper, L. H. et al. A transcription-factor-binding surface of coactivator p300 is required for haematopoiesis. Nature 419, 738–743 (2002)

    Article  ADS  CAS  Google Scholar 

  34. Kasper, L. H. et al. Conditional knockout mice reveal distinct functions for the global transcriptional coactivators CBP and p300 in T-cell development. Mol. Cell. Biol. 26, 789–809 (2006)

    Article  CAS  Google Scholar 

  35. Radhakrishnan, I. et al. Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions. Cell 91, 741–752 (1997)

    Article  CAS  Google Scholar 

  36. Näär, A. M. et al. Chromatin, TAFs, and a novel multiprotein coactivator are required for synergistic activation by Sp1 and SREBP-1a in vitro. Genes Dev. 12, 3020–3031 (1998)

    Article  Google Scholar 

  37. Dai, P. et al. CBP as a transcriptional coactivator of c-Myb. Genes Dev. 10, 528–540 (1996)

    Article  CAS  Google Scholar 

  38. Zor, T., De Guzman, R. N., Dyson, H. J. & Wright, P. E. Solution structure of the KIX domain of CBP bound to the transactivation domain of c-Myb. J. Mol. Biol. 337, 521–534 (2004)

    Article  CAS  Google Scholar 

  39. De Guzman, R. N., Goto, N. K., Dyson, H. J. & Wright, P. E. Structural basis for cooperative transcription factor binding to the CBP coactivator. J. Mol. Biol. 355, 1005–1013 (2006)

    Article  CAS  Google Scholar 

  40. Goto, N. K. et al. Cooperativity in transcription factor binding to the coactivator CREB-binding protein (CBP). The mixed lineage leukemia protein (MLL) activation domain binds to an allosteric site on the KIX domain. J. Biol. Chem. 277, 43168–43174 (2002)

    Article  CAS  Google Scholar 

  41. Parker, D. et al. Analysis of an activator:coactivator complex reveals an essential role for secondary structure in transcriptional activation. Mol. Cell 2, 353–359 (1998)

    Article  CAS  Google Scholar 

  42. Parker, D. et al. Role of secondary structure in discrimination between constitutive and inducible activators. Mol. Cell. Biol. 19, 5601–5607 (1999)

    Article  CAS  Google Scholar 

  43. Radhakrishnan, I. et al. Structural analyses of CREB–CBP transcriptional activator–coactivator complexes by NMR spectroscopy: implications for mapping the boundaries of structural domains. J. Mol. Biol. 287, 859–865 (1999)

    Article  CAS  Google Scholar 

  44. Prasad, R., Gaur, N. A., Gaur, M. & Komath, S. S. Efflux pumps in drug resistance of Candida . Infect. Disord. Drug Targets 6, 69–83 (2006)

    Article  CAS  Google Scholar 

  45. Pfaller, M. A. et al. Results from the ARTEMIS DISK Global Antifungal Surveillance study, 1997 to 2005: an 8.5-year analysis of susceptibilities of Candida species and other yeast species to fluconazole and voriconazole determined by CLSI standardized disk diffusion testing. J. Clin. Microbiol. 45, 1735–1745 (2007)

    Article  CAS  Google Scholar 

  46. Breger, J. et al. Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PLoS Pathogens 3, e18 (2007)

    Article  Google Scholar 

  47. Mylonakis, E. & Aballay, A. Worms and flies as genetically tractable animal models to study host–pathogen interactions. Infect. Immun. 73, 3833–3841 (2005)

    Article  CAS  Google Scholar 

  48. Bertrand, S. et al. Evolutionary genomics of nuclear receptors: from twenty-five ancestral genes to derived endocrine systems. Mol. Biol. Evol. 21, 1923–1937 (2004)

    Article  CAS  Google Scholar 

  49. Phelps, C. et al. Fungi and animals may share a common ancestor to nuclear receptors. Proc. Natl Acad. Sci. USA 103, 7077–7081 (2006)

    Article  ADS  CAS  Google Scholar 

  50. Taubert, S., Van Gilst, M. R., Hansen, M. & Yamamoto, K. R. A Mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and -independent pathways in C. elegans . Genes Dev. 20, 1137–1149 (2006)

    Article  CAS  Google Scholar 

  51. Sherman, F., Fink, G. R. & Hicks, J. B. Methods in Yeast Genetics (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1986)

    Google Scholar 

  52. Gietz, D., St Jean, A., Woods, R. A. & Schiestl, R. H. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20, 1425 (1992)

    Article  CAS  Google Scholar 

  53. Cormack, B. P. & Falkow, S. Efficient homologous and illegitimate recombination in the opportunistic yeast pathogen Candida glabrata . Genetics 151, 979–987 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Aparicio, J. G., Viggiani, C. J., Gibson, D. G. & Aparicio, O. M. The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae . Mol. Cell. Biol. 24, 4769–4780 (2004)

    Article  CAS  Google Scholar 

  55. Kepinski, S. & Leyser, O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435, 446–451 (2005)

    Article  ADS  CAS  Google Scholar 

  56. Breger, J. et al. Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PLoS Pathogens 3, e18 (2007)

    Article  Google Scholar 

  57. Ferentz, A. E. & Wagner, G. NMR spectroscopy: a multifaceted approach to macromolecular structure. Q. Rev. Biophys. 33, 29–65 (2000)

    Article  CAS  Google Scholar 

  58. Frueh, D. P., Arthanari, H. & Wagner, G. Unambiguous assignment of NMR protein backbone signals with a time-shared triple-resonance experiment. J. Biomol. NMR 33, 187–196 (2005)

    Article  CAS  Google Scholar 

  59. Takahashi, H. et al. A novel NMR method for determining the interfaces of large protein–protein complexes. Nature Struct. Mol. Biol. 7, 220–223 (2000)

    Article  CAS  Google Scholar 

  60. Guntert, P., Mumenthaler, C. & Wuthrich, K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283–298 (1997)

    Article  CAS  Google Scholar 

  61. Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Wivagg and M. Franzmann for their help with the NMR assignment and fluorescence studies; and N. Dyson, S. Buratowski, A. Walker and H. Najafi-Shoushtari for comments on the manuscript. We were unable to cite many original papers owing to space constraints. This work was supported by grants from the National Institutes of Health: GM071449 (A.M.N.), CA127990 (G.W./A.M.N.), A1046223 (B.P.C.), GM49825 (W.S.M.-R.) and GM30186 (K.S.). The NMR facility used for this research was supported by grants GM47467 and EB2026. J.K.T. was supported by a fellowship from the MGH Fund for Medical Discovery.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders M. Näär.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-11 with Legends and Supplementary Tables 1-3 The Supplementary Figures describe data in support of the main findings presented in the print version of the paper. The Supplementary Table 1 shows the fungal strains used in the paper, the Supplementary Table 2 lists the primers used for quantitative real-time RT-PCR, and the Supplementary Table 3 outlines the structural NMR data and parameters. (PDF 2504 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thakur, J., Arthanari, H., Yang, F. et al. A nuclear receptor-like pathway regulating multidrug resistance in fungi. Nature 452, 604–609 (2008). https://doi.org/10.1038/nature06836

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06836

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing