Chemical compass model of avian magnetoreception

Abstract

Approximately 50 species, including birds, mammals, reptiles, amphibians, fish, crustaceans and insects, are known to use the Earth’s magnetic field for orientation and navigation1. Birds in particular have been intensively studied, but the biophysical mechanisms that underlie the avian magnetic compass are still poorly understood. One proposal, based on magnetically sensitive free radical reactions2,3, is gaining support4,5,6,7,8,9,10,11 despite the fact that no chemical reaction in vitro has been shown to respond to magnetic fields as weak as the Earth’s (50 μT) or to be sensitive to the direction of such a field. Here we use spectroscopic observation of a carotenoid–porphyrin–fullerene model system to demonstrate that the lifetime of a photochemically formed radical pair is changed by application of ≤50 μT magnetic fields, and to measure the anisotropic chemical response that is essential for its operation as a chemical compass sensor. These experiments establish the feasibility of chemical magnetoreception and give insight into the structural and dynamic design features required for optimal detection of the direction of the Earth’s magnetic field.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: C–P–F triad.
Figure 2: Isotropic magnetic field effects on C–P–F.
Figure 3: Operation of C–P–F as a chemical compass.

References

  1. 1

    Johnsen, S. & Lohmann, K. J. The physics and neurobiology of magnetoreception. Nature Rev. Neurosci. 6, 703–712 (2005)

    CAS  Article  Google Scholar 

  2. 2

    Schulten, K., Swenberg, C. E. & Weller, A. A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion. Z. Phys. Chem. NF111, 1–5 (1978)

    Article  Google Scholar 

  3. 3

    Ritz, T., Adem, S. & Schulten, K. A model for photoreceptor-based magnetoreception in birds. Biophys. J. 78, 707–718 (2000)

    CAS  Article  Google Scholar 

  4. 4

    Ritz, T., Thalau, P., Phillips, J. B., Wiltschko, R. & Wiltschko, W. Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 429, 177–180 (2004)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Möller, A., Sagasser, S., Wiltschko, W. & Schierwater, B. Retinal cryptochrome in a migratory passerine bird: A possible transducer for the avian magnetic compass. Naturwissenschaften 91, 585–588 (2004)

    ADS  Article  Google Scholar 

  6. 6

    Mouritsen, H. et al. Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation. Proc. Natl Acad. Sci. USA 101, 14294–14299 (2004)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Weaver, J. C., Vaughan, T. E. & Astumian, R. D. Biological sensing of small field differences by magnetically sensitive chemical reactions. Nature 405, 707–709 (2000)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Cintolesi, F., Ritz, T., Kay, C. W. M., Timmel, C. R. & Hore, P. J. Anisotropic recombination of an immobilized photoinduced radical pair in a 50-μT magnetic field: A model avian photomagnetoreceptor. Chem. Phys. 294, 385–399 (2003)

    CAS  Article  Google Scholar 

  9. 9

    Wang, K., Mattern, E. & Ritz, T. On the use of magnets to disrupt the physiological compass of birds. Phys. Biol. 3, 220–231 (2006)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Solov'yov, I. A., Chandler, D. E. & Schulten, K. Magnetic field effects in Arabidopsis thaliana cryptochrome-1. Biophys. J. 92, 2711–2726 (2007)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Ahmad, M., Galland, P., Ritz, T., Wiltschko, R. & Wiltschko, W. Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana. Planta 225, 615–624 (2007)

    CAS  Article  Google Scholar 

  12. 12

    Brocklehurst, B. Magnetic fields and radical reactions: Recent developments and their role in nature. Chem. Soc. Rev. 31, 301–311 (2002)

    CAS  Article  Google Scholar 

  13. 13

    Timmel, C. R. & Henbest, K. B. A study of spin chemistry in weak magnetic fields. Phil. Trans. R. Soc. Lond. A 362, 2573–2589 (2004)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Wiltschko, W. & Wiltschko, R. Light-dependent magnetoreception in birds: The behaviour of European robins, Erithacus rubecula, under monochromatic light of various wavelengths and intensities. J. Exp. Biol. 204, 3295–3302 (2001)

    CAS  PubMed  MATH  Google Scholar 

  15. 15

    Wiltschko, W. & Wiltschko, R. Magnetic compass of European robins. Science 176, 62–64 (1972)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Rodgers, C. T., Henbest, K. B., Kukura, P., Timmel, C. R. & Hore, P. J. Low-field optically detected EPR spectroscopy of transient photoinduced radical pairs. J. Phys. Chem. A 109, 5035–5041 (2005)

    CAS  Article  Google Scholar 

  17. 17

    Thalau, P., Ritz, T., Stapput, K., Wiltschko, R. & Wiltschko, W. Magnetic compass orientation of migratory birds in the presence of a 1.315 MHz oscillating field. Naturwissenschaften 92, 86–90 (2005)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Kodis, G., Liddell, P. A., Moore, A. L., Moore, T. A. & Gust, D. Synthesis and photochemistry of a carotene-porphyrin-fullerene model photosynthetic reaction center. J. Phys. Org. Chem. 17, 724–734 (2004)

    CAS  Article  Google Scholar 

  19. 19

    Kuciauskas, D., Liddell, P. A., Moore, A. L., Moore, T. A. & Gust, D. Magnetic switching of charge separation lifetimes in artificial photosynthetic reaction centers. J. Am. Chem. Soc. 120, 10880–10886 (1998)

    CAS  Article  Google Scholar 

  20. 20

    Liddell, P. A. et al. Photoinduced charge separation and charge recombination to a triplet state in a carotene-porphyrin-fullerene triad. J. Am. Chem. Soc. 119, 1400–1405 (1997)

    CAS  Article  Google Scholar 

  21. 21

    van Dijk, B., Carpenter, J. K. H., Hoff, A. J. & Hore, P. J. Magnetic field effects on the recombination kinetics of radical pairs. J. Phys. Chem. B 102, 464–472 (1998)

    CAS  Article  Google Scholar 

  22. 22

    Timmel, C. R., Till, U., Brocklehurst, B., McLauchlan, K. A. & Hore, P. J. Effects of weak magnetic fields on free radical recombination reactions. Mol. Phys. 95, 71–89 (1998)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Rodgers, C. T., Norman, S. A., Henbest, K. B., Timmel, C. R. & Hore, P. J. Determination of radical re-encounter probability distributions from magnetic field effects on reaction yields. J. Am. Chem. Soc. 129, 6746–6755 (2007)

    CAS  Article  Google Scholar 

  24. 24

    Poluektov, O. G., Paschenko, S. V., Utschig, L. M., Lakshmi, K. V. & Thurnauer, M. C. Bidirectional electron transfer in Photosystem I: Direct evidence from high-frequency time-resolved EPR spectroscopy. J. Am. Chem. Soc. 127, 11910–11911 (2005)

    CAS  Article  Google Scholar 

  25. 25

    Efimova, O. E. & Hore, P. J. The role of exchange and dipolar interactions in the radical pair model of the avian magnetic compass. Biophys. J. 94, 1565–1574 (2008)

    CAS  Article  Google Scholar 

  26. 26

    Weber, S. Light-driven enzymatic catalysis of DNA repair: A review of recent biophysical studies on photolyase. Biochim. Biophys. Acta 1707, 1–23 (2005)

    CAS  Article  Google Scholar 

  27. 27

    Prabhakar, R., Siegbahn, P. E. M., Minaev, B. F. & Agren, H. Activation of triplet dioxygen by glucose oxidase: spin-orbit coupling in the superoxide ion. J. Phys. Chem. B 106, 3742–3750 (2002)

    CAS  Article  Google Scholar 

  28. 28

    Henbest, K. B., Kukura, P., Rodgers, C. T., Hore, P. J. & Timmel, C. R. Radio frequency magnetic field effects on a radical recombination reaction: A diagnostic test for the radical pair mechanism. J. Am. Chem. Soc. 126, 8102–8103 (2004)

    CAS  Article  Google Scholar 

  29. 29

    Buchachenko, A. L., Kouznetsov, D. A., Orlova, M. A. & Markarian, A. A. Magnetic isotope effect of magnesium in phosphoglycerate kinase phosphorylation. Proc. Natl Acad. Sci. USA 102, 10793–10796 (2005)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank M. Ahmad, D. Carbonera, M. di Valentin, G. Giacometti, C. W. M. Kay, P. Raynes, T. Ritz and R. Wiltschko for discussions; N. Baker for technical assistance; and the Oxford Supercomputing Centre for allocation of CPU time. P.J.H., C.R.T. and co-workers are funded by the Engineering and Physical Sciences Research Council, the Human Frontier Science Program, the EMF Biological Research Trust and the Royal Society. D.G. and co-workers are funded by the US National Science Foundation. I.K. is a Fellow by Examination at Magdalen College, Oxford.

Author Contributions K.M., K.B.H. and F.C. performed the experiments. K.M., K.B.H. and C.R.T analysed the data. P.A.L. and D.G. synthesized the triad molecule. C.T.R. and P.J.H. analysed the orientational averaging. I.K. performed ab initio calculations. F.C., C.R.T. and P.J.H. designed the study. C.R.T. co-ordinated the study. P.J.H. wrote the paper. All authors discussed the results and commented on the manuscript.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Christiane R. Timmel or P. J. Hore.

Supplementary information

Supplementary information

The file contains Supplementary Notes with Supplementary Figures S1-S3. (PDF 187 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Maeda, K., Henbest, K., Cintolesi, F. et al. Chemical compass model of avian magnetoreception. Nature 453, 387–390 (2008). https://doi.org/10.1038/nature06834

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing