Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Life without RNase P

Abstract

The universality of ribonuclease P (RNase P), the ribonucleoprotein essential for transfer RNA (tRNA) 5′ maturation1,2, is challenged in the archaeon Nanoarchaeum equitans. Neither extensive computational analysis of the genome nor biochemical tests in cell extracts revealed the existence of this enzyme. Here we show that the conserved placement of its tRNA gene promoters allows the synthesis of leaderless tRNAs, whose presence was verified by the observation of 5′ triphosphorylated mature tRNA species. Initiation of tRNA gene transcription requires a purine, which coincides with the finding that tRNAs with a cytosine in position 1 display unusually extended 5′ termini with an extra purine residue. These tRNAs were shown to be substrates for their cognate aminoacyl-tRNA synthetases. These findings demonstrate how nature can cope with the loss of the universal and supposedly ancient RNase P through genomic rearrangement at tRNA genes under the pressure of genome condensation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: RNase P cleavage assay and tRNA genes in N. equitans.
Figure 2: Strict tRNA gene promoter placement in N. equitans.
Figure 3: Detection of triphosphorylated tRNA.
Figure 4: A scenario that allows the loss of RNase P.

References

  1. 1

    Altman, S. et al. Catalysis by the RNA subunit of RNase P — a minireview. Gene 82, 63–64 (1989)

    CAS  Article  Google Scholar 

  2. 2

    Evans, D., Marquez, S. M. & Pace, N. R. RNase P: interface of the RNA and protein worlds. Trends Biochem. Sci. 31, 333–341 (2006)

    CAS  Article  Google Scholar 

  3. 3

    Vögeli, G., Grosjean, H. & Söll, D. A method for the isolation of specific tRNA precursors. Proc. Natl Acad. Sci. USA 72, 4790–4794 (1975)

    ADS  Article  Google Scholar 

  4. 4

    Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. & Altman, S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35, 849–857 (1983)

    CAS  Article  Google Scholar 

  5. 5

    Pannucci, J. A., Haas, E. S., Hall, T. A., Harris, J. K. & Brown, J. W. RNase P RNAs from some Archaea are catalytically active. Proc. Natl Acad. Sci. USA 96, 7803–7808 (1999)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Kikovska, E., Svard, S. G. & Kirsebom, L. A. Eukaryotic RNase P RNA mediates cleavage in the absence of protein. Proc. Natl Acad. Sci. USA 104, 2062–2067 (2007)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Tsai, H. Y., Pulukkunat, D. K., Woznick, W. K. & Gopalan, V. Functional reconstitution and characterization of Pyrococcus furiosus RNase P. Proc. Natl Acad. Sci. USA 103, 16147–16152 (2006)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Li, Y. & Altman, S. In search of RNase P RNA from microbial genomes. RNA 10, 1533–1540 (2004)

    CAS  Article  Google Scholar 

  9. 9

    Willkomm, D. K., Feltens, R. & Hartmann, R. K. tRNA maturation in Aquifex aeolicus . Biochimie 84, 713–722 (2002)

    CAS  Article  Google Scholar 

  10. 10

    Klein, R. J., Misulovin, Z. & Eddy, S. R. Noncoding RNA genes identified in AT-rich hyperthermophiles. Proc. Natl Acad. Sci. USA 99, 7542–7547 (2002)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Randau, L., Münch, R., Hohn, M. J., Jahn, D. & Söll, D. Nanoarchaeum equitans creates functional tRNAs from separate genes for their 5′- and 3′-halves. Nature 433, 537–541 (2005)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Palmer, J. R. & Daniels, C. J. In vivo definition of an archaeal promoter. J. Bacteriol. 177, 1844–1849 (1995)

    CAS  Article  Google Scholar 

  13. 13

    Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004)

    CAS  Article  Google Scholar 

  14. 14

    Hausner, W. & Thomm, M. in Archaea, Evolution, Physiology and Molecular Biology (eds. Garrett, R. A. & Klenk, H. P.) 185–198 (Blackwell, Malden, Massachusetts, 2007)

    Google Scholar 

  15. 15

    Kobayashi, T. et al. Structural basis for orthogonal tRNA specificities of tyrosyl-tRNA synthetases for genetic code expansion. Nature Struct. Biol. 10, 425–432 (2003)

    CAS  Article  Google Scholar 

  16. 16

    Farruggio, D., Chaudhuri, J., Maitra, U. & RajBhandary, U. L. The A1 ˙ U72 base pair conserved in eukaryotic initiator tRNAs is important specifically for binding to the eukaryotic translation initiation factor eIF2. Mol. Cell. Biol. 16, 4248–4256 (1996)

    CAS  Article  Google Scholar 

  17. 17

    Marck, C. & Grosjean, H. tRNomics: analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domain-specific features. RNA 8, 1189–1232 (2002)

    CAS  Article  Google Scholar 

  18. 18

    Connolly, S. A., Rosen, A. E., Musier-Forsyth, K. & Francklyn, C. S. G-1:C73 recognition by an arginine cluster in the active site of Escherichia coli histidyl-tRNA synthetase. Biochemistry 43, 962–969 (2004)

    CAS  Article  Google Scholar 

  19. 19

    Gupta, R. Halobacterium volcanii tRNAs. Identification of 41 tRNAs covering all amino acids, and the sequences of 33 class I tRNAs. J. Biol. Chem. 259, 9461–9471 (1984)

    CAS  PubMed  Google Scholar 

  20. 20

    Shuman, S., Surks, M., Furneaux, H. & Hurwitz, J. Purification and characterization of a GTP-pyrophosphate exchange activity from vaccinia virions. J. Biol. Chem. 255, 11588–11598 (1980)

    CAS  PubMed  Google Scholar 

  21. 21

    Noren, C. J. et al. In vitro suppression of an amber mutation by a chemically aminoacylated transfer RNA prepared by runoff transcription. Nucleic Acids Res. 18, 83–88 (1990)

    CAS  Article  Google Scholar 

  22. 22

    Walker, S. C. & Engelke, D. R. Ribonuclease P: the evolution of an ancient RNA enzyme. Crit. Rev. Biochem. Mol. Biol. 41, 77–102 (2006)

    CAS  Article  Google Scholar 

  23. 23

    Waters, E. et al. The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc. Natl Acad. Sci. USA 100, 12984–12988 (2003)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Das, S., Paul, S., Bag, S. K. & Dutta, C. Analysis of Nanoarchaeum equitans genome and proteome composition: indications for hyperthermophilic and parasitic adaptation. BMC Genomics 7, 186 (2006)

    Article  Google Scholar 

  25. 25

    She, Q., Shen, B. & Chen, L. Archaeal integrases and mechanisms of gene capture. Biochem. Soc. Trans. 32, 222–226 (2004)

    CAS  Article  Google Scholar 

  26. 26

    Altman, S., Kirsebom, L. & Talbot, S. Recent studies of ribonuclease P. FASEB J. 7, 7–14 (1993)

    CAS  Article  Google Scholar 

  27. 27

    Fitz-Gibbon, S. T. et al. Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum . Proc. Natl Acad. Sci. USA 99, 984–989 (2002)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Hartmann, E. & Hartmann, R. K. The enigma of ribonuclease P evolution. Trends Genet. 19, 561–569 (2003)

    CAS  Article  Google Scholar 

  29. 29

    Randau, L. et al. The heteromeric Nanoarchaeum equitans splicing endonuclease cleaves non-canonical bulge–helix–bulge motifs of joined tRNA halves. Proc. Natl Acad. Sci. USA 102, 17934–17939 (2005)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Sprinzl, M. & Vassilenko, K. S. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 33, D139–D140 (2005)

    CAS  Article  Google Scholar 

  31. 31

    Fechter, P., Rudinger, J., Giegé, R. & Théobald-Dietrich, A. Ribozyme processed tRNA transcripts with unfriendly internal promoter for T7 RNA polymerase: production and activity. FEBS Lett. 436, 99–103 (1998)

    CAS  Article  Google Scholar 

  32. 32

    Studier, F. W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank P. O’Donoghue, J. Yuan and L. Sherrer for help and encouragement. This work was supported by grants from the National Institute of General Medical Sciences and the Department of Energy (D.S.) and the National Science Foundation (I.S.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dieter Söll.

Supplementary information

Supplementary Figures

The file contains Supplementary Figures S1-S2 wit Legends. (PDF 2465 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Randau, L., Schröder, I. & Söll, D. Life without RNase P. Nature 453, 120–123 (2008). https://doi.org/10.1038/nature06833

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing