Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electrical effects of spin density wave quantization and magnetic domain walls in chromium

Abstract

The role of magnetic domains (and the walls between domains) in determining the electrical properties of ferromagnetic materials1 has been investigated in great detail for many years, not least because control over domains offers a means of manipulating electron spin to control charge transport in ‘spintronic’ devices2. In contrast, much less attention has been paid to the effects of domains and domain walls on the electrical properties of antiferromagnets: antiferromagnetic domains show no net external magnetic moment, and so are difficult to manipulate or probe. Here we describe electrical measurements on chromium—a simple metal and quintessential spin density wave antiferromagnet3—that show behaviour directly related to spin density wave formation and the presence of antiferromagnetic domains. Two types of thermal hysteresis are seen in both longitudinal and Hall resistivity: the first can be explained by the quantization of spin density waves due to the finite film thickness (confirmed by X-ray diffraction measurements) and the second by domain-wall scattering of electrons4,5. We also observe the striking influence of the electrical lead configuration (a mesoscopic effect) on the resistivity of macroscopic samples in the spin density wave state. Our results are potentially of practical importance, in that they reveal tunable electrical effects of film thickness and domain walls that are as large as the highest seen for ferromagnets6,7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antiferromagnetic spin density wave due to Fermi surface nesting in chromium and its influence on the transport coefficients.
Figure 2: Thermal hysteresis below T N in the transport coefficients, thermal derivatives, and X-ray measurement of the charge density wave.
Figure 3: Thermal hysteresis of transport coefficients observed in the thinnest and thickest films, and schematic diagram of quantization of SDW.
Figure 4: Domain wall scattering due to Fermi surface mismatch.

Similar content being viewed by others

References

  1. Marrows, C. H. Spin-polarised currents and magnetic domain walls. Adv. Phys. 54, 585–713 (2005)

    Article  CAS  ADS  Google Scholar 

  2. Zutic, I., Fabian, J. & Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004)

    Article  CAS  ADS  Google Scholar 

  3. Fawcett, E. Spin-density-wave antiferromagnetism in chromium. Rev. Mod. Phys. 60, 209–283 (1988)

    Article  CAS  ADS  Google Scholar 

  4. Jaramillo, R. et al. Microscopic and macroscopic signatures of antiferromagnetic domain walls. Phys. Rev. Lett. 98, 117206 (2007)

    Article  CAS  ADS  Google Scholar 

  5. Shpyrko, O. G. et al. Direct measurement of antiferromagnetic domain fluctuations. Nature 447, 68–71 (2007)

    Article  CAS  ADS  Google Scholar 

  6. Marrows, C. H. & Dalton, B. C. Spin mixing and spin-current asymmetry measured by domain wall magnetoresistance. Phys. Rev. Lett. 92, 097206 (2004)

    Article  CAS  ADS  Google Scholar 

  7. Ebels, U. et al. Spin accumulation and domain wall magnetoresistance in 35 nm Co wires. Phys. Rev. Lett. 84, 983–986 (2000)

    Article  CAS  ADS  Google Scholar 

  8. Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001) Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988)

    Article  CAS  ADS  Google Scholar 

  9. Evans, P. G. et al. X-ray microdiffraction images of antiferromagnetic domain evolution in chromium. Science 295, 1042–1045 (2002)

    Article  CAS  ADS  Google Scholar 

  10. Bode, M. et al. Atomic spin structure of antiferromagnetic domain walls. Nature Mater. 5, 477–481 (2006)

    Article  CAS  ADS  Google Scholar 

  11. Yeh, A. et al. Quantum phase transition in a common metal. Nature 419, 459–462 (2002)

    Article  CAS  ADS  Google Scholar 

  12. Lee, M., Husmann, A., Rosenbaum, T. F. & Aeppli, G. High resolution study of magnetic ordering at absolute zero. Phys. Rev. Lett. 92, 187201 (2004)

    Article  CAS  ADS  Google Scholar 

  13. Lomer, W. M. Electronic structure of chromium group metals. Proc. Phys. Soc. Lond. 80, 489–496 (1962)

    Article  CAS  ADS  Google Scholar 

  14. Rotenberg, E. et al. Electron states and the spin density wave phase diagram in Cr(110) films. N. J. Phys. 10.1088/1367–2630/7/1/114 (2005)

  15. Norman, M. R., Si, Q. M., Bazaliy, Y. B. & Ramazashvili, R. Hall effect in nested antiferromagnets near the quantum critical point. Phys. Rev. Lett. 90, 116601 (2003)

    Article  CAS  ADS  Google Scholar 

  16. Bazaliy, Y. B., Ramazashvili, R., Si, Q. & Norman, M. R. Magnetotransport near a quantum critical point in a simple metal. Phys. Rev. B 69, 144423 (2004)

    Article  ADS  Google Scholar 

  17. Takeda, M. et al. Spin density wave in epitaxial Cr(001)/Sn and Cr(001)/Au multilayers with nonmagnetic spacer layers. J. Phys. Soc. Jpn. 69, 1590–1593 (2000)

    Article  CAS  ADS  Google Scholar 

  18. Sonntag, P. et al. Magnetic phase diagram for spin-density waves in thin epitaxial Cr(001) films. J. Magn. Magn. Mater. 183, 5–18 (1998)

    Article  CAS  ADS  Google Scholar 

  19. Bodeker, P. et al. Reorientation of spin density waves in Cr(001) films induced by Fe(001) cap layers. Phys. Rev. Lett. 81, 914–917 (1998)

    Article  CAS  ADS  Google Scholar 

  20. Shi, Z. P. & Fishman, R. S. Interplay between spin density wave and proximity magnetic layers. Phys. Rev. Lett. 78, 1351–1354 (1997)

    Article  CAS  ADS  Google Scholar 

  21. Niklasson, A. M. N., Johansson, B. & Nordstrom, L. Spin density waves in thin chromium films. Phys. Rev. Lett. 82, 4544–4547 (1999)

    Article  CAS  ADS  Google Scholar 

  22. Werner, S. A., Arrott, A. & Kendrick, H. Temperature and magnetic-field dependence of antiferromagnetism in pure chromium. Phys. Rev. 155, 528–539 (1967)

    Article  CAS  ADS  Google Scholar 

  23. Mibu, K. et al. Discrete change of spin-density-wave modulation in Cr(100)/Sn multilayers as a function of Cr layer thickness. Phys. Rev. Lett. 89, 287202 (2002)

    Article  CAS  Google Scholar 

  24. Fullerton, E. E. et al. Hysteretic spin-density-wave ordering in confined geometries. Phys. Rev. Lett. 91, 237201 (2003)

    Article  ADS  Google Scholar 

  25. Hill, J. P., Helgesen, G. & Gibbs, D. X-ray scattering study of charge and spin-density-waves in chromium. Phys. Rev. B 51, 10336–10344 (1995)

    Article  CAS  ADS  Google Scholar 

  26. Fishman, R. S. & Shi, Z. P. Collinear spin-density-wave ordering in Fe Cr multilayers and wedges. Phys. Rev. B 59, 13849–13860 (1999)

    Article  CAS  ADS  Google Scholar 

  27. Muir, W. B. & Stromols, J. O. Electrical resistance of single-crystal single-domain chromium from 77 to 325 degrees K. Phys. Rev. B 4, 988–991 (1971)

    Article  ADS  Google Scholar 

  28. Arko, A. J., Marcus, J. A. & Reed, W. A. High-field galvanomagnetic effects in antiferromagnetic chromium. Phys. Rev. 1, 671–683 (1968)

    Article  ADS  Google Scholar 

  29. Ziman, J. M. Electrons and Phonons. (Oxford Univ. Press, Oxford, 1960)

    MATH  Google Scholar 

  30. Michel, R. P. et al. Electrical-noise measurements on chromium films. Phys. Rev. B 44, 7413–7425 (1991)

    Article  CAS  ADS  Google Scholar 

  31. Furuya, Y. Temperature and magnetic-field dependence of Hall-coefficient on antiferromagnetic chromium. J. Phys. Soc. Jpn. 40, 490–497 (1976)

    Article  CAS  ADS  Google Scholar 

  32. Laurent, D. G., Callaway, J., Fry, J. L. & Brener, N. E. Band-structure, Fermi-surface, Compton profile, and optical conductivity of paramagnetic chromium. Phys. Rev. B 23, 4977–4987 (1981)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We thank the Burke foundation for their generous support of the project, J. Karapetrova, Z. Islam and J. Lang at Argonne National Laboratory and M. Vaudin at NIST for assisting the X-ray measurements, and the Rockefeller Foundation for the Bellagio Residency where this manuscript was completed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeong-Ah Soh.

Supplementary information

Supplementary Methods

This file contains Supplementary Methods describing additional details of the measurements and some calculations. (PDF 47 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kummamuru, R., Soh, YA. Electrical effects of spin density wave quantization and magnetic domain walls in chromium. Nature 452, 859–863 (2008). https://doi.org/10.1038/nature06826

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06826

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing