Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Improper ferroelectricity in perovskite oxide artificial superlattices

Abstract

Ferroelectric thin films and superlattices are currently the subject of intensive research1,2 because of the interest they raise for technological applications and also because their properties are of fundamental scientific importance3,4,5. Ferroelectric superlattices6 allow the tuning of the ferroelectric properties while maintaining perfect crystal structure and a coherent strain, even throughout relatively thick samples. This tuning is achieved in practice by adjusting both the strain7,8,9,10, to enhance the polarization, and the composition, to interpolate between the properties of the combined compounds11,12,13,14,15. Here we show that superlattices with very short periods possess a new form of interface coupling, based on rotational distortions, which gives rise to ‘improper’ ferroelectricity. These observations suggest an approach, based on interface engineering, to produce artificial materials with unique properties. By considering ferroelectric/paraelectric PbTiO3/SrTiO3 multilayers, we first show from first principles that the ground-state of the system is not purely ferroelectric but also primarily involves antiferrodistortive rotations of the oxygen atoms in a way compatible with improper ferroelectricity. We then demonstrate experimentally that, in contrast to pure PbTiO3 and SrTiO3 compounds, the multilayer system indeed behaves like a prototypical improper ferroelectric and exhibits a very large dielectric constant of εr ≈ 600, which is also fairly temperature-independent. This behaviour, of practical interest for technological applications16, is distinct from that of normal ferroelectrics, for which the dielectric constant is typically large but strongly evolves around the phase transition temperature and also differs from that of previously known improper ferroelectrics that exhibit a temperature-independent but small dielectric constant only.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic view of the prototype P 4/ mmm unit cell of the 1/1 PbTiO 3 /SrTiO 3 superlattice and atomic motions associated to different energy lowering distortions.
Figure 2: Results of the first-principles calculations.
Figure 3: Experimental measurements of phase transition behaviour in normal and anomalous samples.

Similar content being viewed by others

References

  1. Ahn, C. H., Rabe, K. M. & Triscone, J.-M. Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 303, 488–491 (2004)

    Article  CAS  ADS  Google Scholar 

  2. Dawber, M., Rabe, K. M. & Scott, J. F. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2005)

    Article  CAS  ADS  Google Scholar 

  3. Junquera, J. & Ghosez Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003)

    Article  CAS  ADS  Google Scholar 

  4. Fong, D. D. et al. Ferroelectricity in ultrathin perovskite films. Science 304, 1650–1653 (2004)

    Article  CAS  ADS  Google Scholar 

  5. Lichtensteiger, C., Triscone, J.-M., Junquera, J. & Ghosez Ferroelectricity and tetragonality in ultrathin PbTiO3 films. Phys. Rev. Lett. 94, 047603 (2005)

    Article  ADS  Google Scholar 

  6. Rijnders, G. & Blank, D. H. A. Build your own superlattice. Nature 433, 369–370 (2005)

    Article  CAS  ADS  Google Scholar 

  7. Pertsev, N. A., Zembilgotov, A. G. & Tagantsev, A. K. Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films. Phys. Rev. Lett. 80, 1988–1991 (1998)

    Article  CAS  ADS  Google Scholar 

  8. Diéguez, O., Rabe, K. M. & Vanderbilt, D. First-principles study of epitaxial strain in perovskites. Phys. Rev. B 72, 144101 (2005)

    Article  ADS  Google Scholar 

  9. Choi, K. J. et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005–1009 (2004)

    Article  CAS  ADS  Google Scholar 

  10. Haeni, J. H. et al. Room-temperature ferroelectricity in strained SrTiO3 . Nature 430, 758–761 (2004)

    Article  CAS  ADS  Google Scholar 

  11. Neaton, J. & Rabe, K. M. Theory of polarization enhancement in epitaxial BaTiO3/SrTiO3 superlattices. Appl. Phys. Lett. 82, 1586–1588 (2003)

    Article  CAS  ADS  Google Scholar 

  12. Dawber, M. et al. Unusual behavior of ferroelectric polarization in PbTiO3/SrTiO3 superlattices. Phys. Rev. Lett. 95, 177601 (2005)

    Article  CAS  ADS  Google Scholar 

  13. Lee, H. N., Christen, H. N., Chrisholm, M. F., Rouleau, C. M. & Lowndes, D. H. Strong polarization enhancement in asymmetric three-component ferroelectric superlattices. Nature 433, 395–399 (2005)

    Article  CAS  ADS  Google Scholar 

  14. Nakhmanson, S. M., Rabe, K. M. & Vanderbilt, D. Polarization enhancement in two- and three-component ferroelectric superlattices. Appl. Phys. Lett. 87, 102906 (2005)

    Article  ADS  Google Scholar 

  15. Dawber, M. et al. Tailoring the properties of artificially layered ferroelectric superlattices. Adv. Mater. 19, 4153–4159 (2007)

    Article  CAS  Google Scholar 

  16. Kingon, A. I., Maria, J. P. & Streiffer, S. K. Alternative dielectrics to silicon dioxide for memory and logic devices. Nature 406, 1032–1038 (2000)

    Article  CAS  Google Scholar 

  17. Ghosez, Cockayne, E., Waghmare, U. V. & Rabe, K. M. Comparative study of the dynamical properties of BaTiO3, PbTiO3 and PbZrO3 . Phys. Rev. B 60, 836–843 (1999)

    Article  CAS  ADS  Google Scholar 

  18. Munkholm, A. et al. Antiferrodistortive reconstruction of the PbTiO3(001) surface. Phys. Rev. Lett. 88, 016101 (2002)

    Article  CAS  ADS  Google Scholar 

  19. Bungaro, C. & Rabe, K. M. Coexistence of antiferrodistortive and ferroelectric distortions at the PbTiO3 (001) surface. Phys. Rev. B 71, 035420 (2005)

    Article  ADS  Google Scholar 

  20. Zhong, W. & Vanderbilt, D. Competing structural instabilities in cubic perovskites. Phys. Rev. Lett. 74, 2587–2590 (1995)

    Article  CAS  ADS  Google Scholar 

  21. Pertsev, N. A., Tagantsev, A. K. & Setter, N. Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films. Phys. Rev. B 61, R825–R828 (2000)

    Article  CAS  ADS  Google Scholar 

  22. Lin, C.-H., Huang, C.-M. & Guo, G. Y. Systematic ab initio study of the phase diagram of epitaxially strained SrTiO3 . J. Appl. Phys. 100, 084104 (2006)

    Article  ADS  Google Scholar 

  23. Vasudevarao, A. et al. Multiferroic domain dynamics in strained strontium titanate. Phys. Rev. Lett. 97, 257602 (2006)

    Article  CAS  ADS  Google Scholar 

  24. Gonze, X. et al. First-principles computation of material properties: the ABINIT software project. Computat. Mater. Sci. 25, 478–492 (2002)

    Article  Google Scholar 

  25. Miller, S. C. & Love, W. F. Tables of Irreductible Representations of Space Groups and Co-Representations of Magnetic Space Groups (Pruett, Boulder, 1967)

    Google Scholar 

  26. Glazer, A. M. The classification of tilted octahedra in perovskites. Acta Crystallogr. B 28, 3384–3392 (1972)

    Article  CAS  Google Scholar 

  27. Levanyuk, A. P. & Sannikov, D. G. Improper ferroelectrics. Uspekhi Fizicheskikh Nauk 112, 561–589 (1974)

    Article  CAS  Google Scholar 

  28. Holakovski, J. A new type of ferroelectric phase transition. Phys. Status Solidi B 56, 615–619 (1973)

    Article  ADS  Google Scholar 

  29. Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006)

    Article  CAS  ADS  Google Scholar 

  30. Fennie, C. J. & Rabe, K. M. Ferroelectric transition in YMnO3 from first principles. Phys. Rev. B 72, 100103(R) (2005)

    Article  ADS  Google Scholar 

  31. Martin, R. M. Electronic Structure: Basic Theory and Practical Methods (Cambridge Univ. Press, Cambridge, 2004)

    Book  Google Scholar 

  32. Teter, M. P. Additional condition for transferability in pseudopotentials. Phys. Rev. B 48, 5031–5041 (1993)

    Article  CAS  ADS  Google Scholar 

  33. Gonze, X. & Lee, C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55, 10355–10368 (1997)

    Article  CAS  ADS  Google Scholar 

  34. King-Smith, R. D. & Vanderbilt, D. Theory of polarization of crystalline solids. Phys. Rev. B 47, 1651–1654 (1993)

    Article  CAS  ADS  Google Scholar 

  35. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

P.G. thanks A. P. Levanyuk for discussions concerning improper ferroelectrics. We thank R. Černý for help with X-ray diffraction. This work was supported by the VolkswagenStiftung, the European Network of Excellence FAME, the European STREP MaCoMuFi, the Swiss National Science Foundation through the “National Center of Competence in Research Materials with Novel Electronic Properties—MaNEP” and Division II, and ESF(THIOX).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthew Dawber or Philippe Ghosez.

Supplementary information

Supplementary information

The file contains Supplementary Notes illustrated with Supplementary Table S1 and Supplementary Figures S1-S2. (PDF 508 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bousquet, E., Dawber, M., Stucki, N. et al. Improper ferroelectricity in perovskite oxide artificial superlattices. Nature 452, 732–736 (2008). https://doi.org/10.1038/nature06817

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06817

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing