Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tracing the stepwise oxygenation of the Proterozoic ocean

Abstract

Biogeochemical signatures preserved in ancient sedimentary rocks provide clues to the nature and timing of the oxygenation of the Earth’s atmosphere. Geochemical data1,2,3,4,5,6 suggest that oxygenation proceeded in two broad steps near the beginning and end of the Proterozoic eon (2,500 to 542 million years ago). The oxidation state of the Proterozoic ocean between these two steps and the timing of deep-ocean oxygenation have important implications for the evolutionary course of life on Earth but remain poorly known. Here we present a new perspective on ocean oxygenation based on the authigenic accumulation of the redox-sensitive transition element molybdenum in sulphidic black shales. Accumulation of authigenic molybdenum from sea water is already seen in shales by 2,650 Myr ago; however, the small magnitudes of these enrichments reflect weak or transient7 sources of dissolved molybdenum before about 2,200 Myr ago, consistent with minimal oxidative weathering of the continents. Enrichments indicative of persistent and vigorous oxidative weathering appear in shales deposited at roughly 2,150 Myr ago, more than 200 million years after the initial rise in atmospheric oxygen1,2. Subsequent expansion of sulphidic conditions after about 1,800 Myr ago (refs 8, 9) maintained a mid-Proterozoic molybdenum reservoir below 20 per cent of the modern inventory, which in turn may have acted as a nutrient feedback limiting the spatiotemporal distribution of euxinic (sulphidic) bottom waters and perhaps the evolutionary and ecological expansion of eukaryotic organisms10. By 551 Myr ago, molybdenum contents reflect a greatly expanded oceanic reservoir due to oxygenation of the deep ocean and corresponding decrease in sulphidic conditions in the sediments and water column.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Temporal trends in Mo enrichment in black shales.
Figure 2: Temporal trends in Mo/TOC ratios in euxinic black shales.

References

  1. 1

    Karhu, J. A. & Holland, H. D. Carbon isotopes and the rise of atmospheric oxygen. Geology 24, 867–870 (1996)

    CAS  ADS  Article  Google Scholar 

  2. 2

    Bekker, A. et al. Dating the rise of atmospheric oxygen. Nature 427, 117–120 (2004)

    CAS  ADS  Article  Google Scholar 

  3. 3

    Farquhar, J. & Wing, B. A. Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet. Sci. Lett. 213, 1–13 (2003)

    CAS  ADS  Article  Google Scholar 

  4. 4

    Rouxel, O. J., Bekker, A. & Edwards, K. J. Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science 307, 1088–1091 (2005)

    CAS  ADS  Article  Google Scholar 

  5. 5

    Canfield, D. E., Poulton, S. W. & Narbonne, G. M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315, 92–95 (2007)

    CAS  ADS  Article  Google Scholar 

  6. 6

    Fike, D. A., Grotzinger, J. P., Pratt, L. M. & Summons, R. E. Oxidation of the Ediacaran ocean. Nature 444, 744–747 (2006)

    CAS  ADS  Article  Google Scholar 

  7. 7

    Anbar, A. D. et al. A whiff of oxygen before the Great Oxidation Event? Science 317, 1903–1906 (2007)

    CAS  ADS  Article  Google Scholar 

  8. 8

    Canfield, D. E. A new model for Proterozoic ocean chemistry. Nature 396, 450–453 (1998)

    CAS  ADS  Article  Google Scholar 

  9. 9

    Poulton, S. W., Fralick, P. W. & Canfield, D. E. The transition to a sulphidic ocean 1.84 billion years ago. Nature 431, 173–177 (2004)

    CAS  ADS  Article  Google Scholar 

  10. 10

    Anbar, A. D. & Knoll, A. H. Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science 297, 1137–1142 (2002)

    CAS  ADS  Article  Google Scholar 

  11. 11

    Holland, H. D. The Chemical Evolution of the Atmosphere and Oceans (Princeton Univ. Press, Princeton NJ, 1984)

    Google Scholar 

  12. 12

    Shen, Y., Canfield, D. E. & Knoll, A. H. Middle Proterozoic ocean chemistry: Evidence from the McArthur Basin, northern Australia. Am. J. Sci. 302, 81–109 (2002)

    CAS  ADS  Article  Google Scholar 

  13. 13

    Shen, Y., Knoll, A. H. & Walter, M. R. Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin. Nature 423, 632–635 (2003)

    CAS  ADS  Article  Google Scholar 

  14. 14

    Arnold, G. L., Anbar, A. D., Barling, J. & Lyons, T. W. Molybdenum isotope evidence for widespread anoxia in Mid-Proterozoic oceans. Science 304, 87–90 (2004)

    CAS  ADS  Article  Google Scholar 

  15. 15

    Brocks, J. J. et al. Biomarker evidence for green and purple sulphur bacteria in a stratified Paleoproterozoic sea. Nature 437, 866–870 (2005)

    CAS  ADS  Article  Google Scholar 

  16. 16

    Slack, J. F., Grenne, T., Bekker, A., Rouxel, O. J. & Lindberg, P. A. Suboxic deep seawater in the late Paleoproterozoic: Evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA. Earth Planet. Sci. Lett. 255, 243–256 (2007)

    CAS  ADS  Article  Google Scholar 

  17. 17

    Algeo, T. J. & Lyons, T. W. Mo–total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography 21, doi:10.1029/2004PA001112 (2006)

  18. 18

    Bertine, K. K. & Turekian, K. K. Molybdenum in marine deposits. Geochim. Cosmochim. Acta 37, 1415–1434 (1973)

    CAS  ADS  Article  Google Scholar 

  19. 19

    Taylor, S. R. & McLennan, S. M. The geochemical evolution of the continental crust. Rev. Geophys. 33, 241–265 (1995)

    ADS  Article  Google Scholar 

  20. 20

    Helz, G. R. et al. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochim. Cosmochim. Acta 60, 3631–3642 (1996)

    CAS  ADS  Article  Google Scholar 

  21. 21

    Lyons, T. W. & Berner, R. B. Carbon–sulfur–iron systematics of the upper-most deep-water sediments of the Black Sea. Chem. Geol. 99, 1–27 (1992)

    CAS  ADS  Article  Google Scholar 

  22. 22

    Lyons, T. W., Werne, J. P., Hollander, D. J. & Murray, R. W. Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela. Chem. Geol. 195, 131–157 (2003)

    CAS  ADS  Article  Google Scholar 

  23. 23

    Emerson, S. R. & Huested, S. S. Ocean anoxia and the concentrations of molybdenum and vanadium in seawater. Mar. Chem. 34, 177–196 (1991)

    CAS  Article  Google Scholar 

  24. 24

    Lyons, T. W. & Severmann, S. A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins. Geochim. Cosmochim. Acta 70, 5698–5722 (2006)

    CAS  ADS  Article  Google Scholar 

  25. 25

    Brocks, J. J., Logan, G. A., Buick, R. & Summons, R. E. Archean molecular fossils and the early rise of eukaryotes. Science 285, 1033–1036 (1999)

    CAS  Article  Google Scholar 

  26. 26

    Kaufman, A. J. et al. Late Archean biospheric oxygenation and atmospheric evolution. Science 317, 1900–1903 (2007)

    CAS  ADS  Article  Google Scholar 

  27. 27

    Hannah, J. L., Bekker, A., Stein, H. J., Markey, R. J. & Holland, H. D. Primitive Os and 2316 Ma age for marine shale: implications for Paleoproterozoic glacial events and the rise of atmospheric oxygen. Earth Planet. Sci. Lett. 225, 43–52 (2004)

    CAS  ADS  Article  Google Scholar 

  28. 28

    Kah, L. C., Lyons, T. W. & Frank, T. D. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature 431, 834–838 (2004)

    CAS  ADS  Article  Google Scholar 

  29. 29

    Zerkle, A. L., House, C. H., Cox, R. P. & Canfield, D. E. Metal limitation of cyanobacterial N2 fixation and implications for the Precambrian nitrogen cycle. Geobiology 4, 285–297 (2006)

    CAS  Article  Google Scholar 

  30. 30

    Lyons, T. W., Luepke, J. J., Schreiber, M. E. & Zieg, G. A. Sulfur geochemical constraints on Mesoproterozic restricted marine deposition: lower Belt Supergroup, northwestern United States. Geochim. Cosmochim. Acta 64, 427–437 (2000)

    CAS  ADS  Article  Google Scholar 

  31. 31

    Raiswell, R., Buckley, F., Berner, R. A. & Anderson, T. F. Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation. J. Sedim. Res. 58, 812–819 (1988)

    CAS  Google Scholar 

  32. 32

    Canfield, D. E., Raiswell, R., Westrich, J. T., Reaves, C. M. & Berner, R. A. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem. Geol. 54, 149–155 (1986)

    CAS  ADS  Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the US NSF-EAR and NASA Astrobiology Institute. A.B. and Y.S. were funded by NSERC. S.W.P. acknowledges financial support from Danmarks Grundforskningsfond and a NERC Research Fellowship. X.C. was funded by NNFSC. The manuscript was improved by comments from J. Hayes and D. Vance. We thank B. Krapež, N. Beukes, F. Gauthier-Lafaye, P. Medvedev, D. Winston and the geological surveys of South Africa and Botswana for field support and access to sample collections. G. Arnold, G. Gordon and S. Severmann provided analytical support. B. Gill compiled Phanerozoic data.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Scott.

Supplementary information

Supplementary Information

He file contains Supplementary Discussion, Supplementary Tables 1-4 and additional references. The Supplementary Information includes a discussion of the sources and sinks involved in the modern Mo cycle. Tables 1-3 include an overall summary of the budget, a summary of published values on Mo burial rates and a comparison between seawater Mo concentrations and enrichment factors. Also included are descriptions of materials analyzed and a data table. (PDF 290 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Scott, C., Lyons, T., Bekker, A. et al. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature 452, 456–459 (2008). https://doi.org/10.1038/nature06811

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing