Abstract
Courtship is an innate sexually dimorphic behaviour that can be observed in naive animals without previous learning or experience, suggesting that the neural circuits that mediate this behaviour are developmentally programmed1. In Drosophila, courtship involves a complex yet stereotyped array of dimorphic behaviours that are regulated by FruM, a male-specific isoform of the fruitless gene2,3,4,5. FruM is expressed in about 2,000 neurons in the fly brain, including three subpopulations of olfactory sensory neurons and projection neurons (PNs). One set of Fru+ olfactory neurons expresses the odorant receptor Or67d and responds to the male-specific pheromone cis-vaccenyl acetate (cVA)6,7,8,9,10. These neurons converge on the DA1 glomerulus in the antennal lobe. In males, activation of Or67d+ neurons by cVA inhibits courtship of other males, whereas in females their activation promotes receptivity to other males7. These observations pose the question of how a single pheromone acting through the same set of sensory neurons can elicit different behaviours in male and female flies. Anatomical or functional dimorphisms in this neural circuit might be responsible for the dimorphic behaviour. We therefore developed a neural tracing procedure that employs two-photon laser scanning microscopy to activate the photoactivatable green fluorescent protein11. Here we show, using this technique, that the projections from the DA1 glomerulus to the protocerebrum are sexually dimorphic. We observe a male-specific axonal arbor in the lateral horn whose elaboration requires the expression of the transcription factor FruM in DA1 projection neurons and other Fru+ cells. The observation that cVA activates a sexually dimorphic circuit in the protocerebrum suggests a mechanism by which a single pheromone can elicit different behaviours in males and in females.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Hall, J. C. The mating of a fly. Science 264, 1702–1714 (1994)
Demir, E. & Dickson, B. J. fruitless splicing specifies male courtship behavior in Drosophila. Cell 121, 785–794 (2005)
Stockinger, P. et al. Neural circuitry that governs Drosophila male courtship behavior. Cell 121, 795–807 (2005)
Manoli, D. S. et al. Male-specific fruitless specifies the neural substrates of Drosophila courtship behaviour. Nature 436, 395–400 (2005)
Billeter, J. C. et al. Isoform-specific control of male neuronal differentiation and behavior in Drosophila by the fruitless gene. Curr. Biol. 16, 1063–1076 (2006)
Clyne, P., Grant, A., O’Connell, R. & Carlson, J. R. Odorant response of individual sensilla on the Drosophila antenna. Invert. Neurosci. 3, 127–135 (1997)
Kurtovic, A., Widmer, A. & Dickson, B. J. A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature 446, 542–546 (2007)
Couto, A., Alenius, M. & Dickson, B. J. Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr. Biol. 15, 1535–1547 (2005)
Fishilevich, E. & Vosshall, L. B. Genetic and functional subdivision of the Drosophila antennal lobe. Curr. Biol. 15, 1548–1553 (2005)
Ha, T. S. & Smith, D. P. A pheromone receptor mediates 11-cis-vaccenyl acetate-induced responses in Drosophila. J. Neurosci. 26, 8727–8733 (2006)
Patterson, G. H. & Lippincott-Schwartz, J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297, 1873–1877 (2002)
Stocker, R. F., Heimbeck, G., Gendre, N. & de Belle, J. S. Neuroblast ablation in Drosophila P[GAL4] lines reveals origins of olfactory interneurons. J. Neurobiol. 32, 443–456 (1997)
Nakai, J., Ohkura, M. & Imoto, K. A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nature Biotechnol. 19, 137–141 (2001)
Schlief, M. L. & Wilson, R. I. Olfactory processing and behavior downstream from highly selective receptor neurons. Nature Neurosci. 10, 623–630 (2007)
Kondoh, Y., Kaneshiro, K. Y., Kimura, K. & Yamamoto, D. Evolution of sexual dimorphism in the olfactory brain of Hawaiian Drosophila. Proc. R. Soc. B 270, 1005–1013 (2003)
Jefferis, G. S. et al. Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell 128, 1187–1203 (2007)
Hallem, E. A. & Carlson, J. R. Coding of odors by a receptor repertoire. Cell 125, 143–160 (2006)
Ito, K. et al. The organization of extrinsic neurons and their implications in the functional roles of the mushroom bodies in Drosophila melanogaster Meigen. Learn. Mem. 5, 52–77 (1998)
Jefferis, G. S. et al. Developmental origin of wiring specificity in the olfactory system of Drosophila. Development 131, 117–130 (2004)
Heinrichs, V., Ryner, L. C. & Baker, B. S. Regulation of sex-specific selection of fruitless 5′ splice sites by transformer and transformer-2. Mol. Cell. Biol. 18, 450–458 (1998)
Ito, H. et al. Sexual orientation in Drosophila is altered by the satori mutation in the sex-determination gene fruitless that encodes a zinc finger protein with a BTB domain. Proc. Natl Acad. Sci. USA 93, 9687–9692 (1996)
Ryner, L. C. et al. Control of male sexual behavior and sexual orientation in Drosophila by the fruitless gene. Cell 87, 1079–1089 (1996)
Kimura, K., Ote, M., Tazawa, T. & Yamamoto, D. Fruitless specifies sexually dimorphic neural circuitry in the Drosophila brain. Nature 438, 229–233 (2005)
Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci. 24, 251–254 (2001)
Wong, A. M., Wang, J. W. & Axel, R. Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 109, 229–241 (2002)
Basler, K. & Struhl, G. Compartment boundaries and the control of Drosophila limb pattern by hedgehog protein. Nature 368, 208–214 (1994)
Cajal, S. R. Manual de Histologia normal y Tecnica micrografica (Pascual Aguilar, Valencia, 1889)
Acknowledgements
We thank G. Struhl, L. Vosshall, B. Sabatini, B. Bloodgood and members of the Axel laboratory for discussions about the experiments in this manuscript; J. Meier for technical assistance; J. Rafter for assistance in measuring the microscope point-spread function; A. Gerber for assistance with warping techniques; and P. J. Kisloff for assistance in the preparation of this manuscript. Financial support was provided by the Helen Hay Whitney Foundation (S.R.D., V.R.) and the Howard Hughes Medical Institute, the Mathers Foundation and the Gates Foundation (R.A.).
Author information
Authors and Affiliations
Corresponding author
Supplementary information
Supplementary Information
The file contains Supplementary Figures 1-5 with Legends and Supplementary Methods with additional references. (PDF 734 kb)
Rights and permissions
About this article
Cite this article
Datta, S., Vasconcelos, M., Ruta, V. et al. The Drosophila pheromone cVA activates a sexually dimorphic neural circuit. Nature 452, 473–477 (2008). https://doi.org/10.1038/nature06808
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature06808
This article is cited by
-
Evolution of chemosensory tissues and cells across ecologically diverse Drosophilids
Nature Communications (2024)
-
Replenishment of Drosophila Male Pheromone After Mating
Journal of Chemical Ecology (2024)
-
Two sex pheromone receptors for sexual communication in the American cockroach
Science China Life Sciences (2024)
-
A rapid and bidirectional reporter of neural activity reveals neural correlates of social behaviors in Drosophila
Nature Neuroscience (2023)
-
Chemical communication and its role in sexual selection across Animalia
Communications Biology (2023)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.