Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Triggers, targets and treatments for thrombosis

Abstract

Thrombosis — localized clotting of the blood — can occur in the arterial or the venous circulation and has a major medical impact. Acute arterial thrombosis is the proximal cause of most cases of myocardial infarction (heart attack) and of about 80% of strokes, collectively the most common cause of death in the developed world. Venous thromboembolism is the third leading cause of cardiovascular-associated death. The pathogenic changes that occur in the blood vessel wall and in the blood itself resulting in thrombosis are not fully understood. Understanding these processes is crucial for developing safer and more effective antithrombotic drugs.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Triggers of arterial and venous thrombosis.
Figure 2: Targets of antiplatelet drugs.
Figure 3: Targets of anticoagulant drugs.

References

  1. Hartwig, J. & Italiano, J. The birth of the platelet. J. Thromb. Haemost. 1, 1580–1586 (2003).

    Article  CAS  Google Scholar 

  2. Ruggeri, Z. M. & Mendolicchio, G. L. Adhesion mechanisms in platelet function. Circ. Res. 100, 1673–1685 (2007).

    Article  CAS  Google Scholar 

  3. Denis, C. V. & Wagner, D. D. Platelet adhesion receptors and their ligands in mouse models of thrombosis. Arterioscler. Thromb. Vasc. Biol. 27, 728–739 (2007).

    Article  CAS  Google Scholar 

  4. Savage, B., Almus-Jacobs, F. & Ruggeri, Z. M. Specific synergy of multiple substrate–receptor interactions in platelet thrombus formation under flow. Cell 94, 657–666 (1998).

    Article  CAS  Google Scholar 

  5. Coughlin, S. R. Protease-activated receptors in hemostasis, thrombosis and vascular biology. J. Thromb. Haemost. 3, 1800–1814 (2005).

    Article  CAS  Google Scholar 

  6. Marmur, J. D. et al. Identification of active tissue factor in human coronary atheroma. Circulation 94, 1226–1232 (1996).

    Article  CAS  Google Scholar 

  7. Tremoli, E., Camera, M., Toschi, V. & Colli, S. Tissue factor in atherosclerosis. Atherosclerosis 144, 273–283 (1999).

    Article  CAS  Google Scholar 

  8. Misumi, K. et al. Comparison of plasma tissue factor levels in unstable and stable angina pectoris. Am. J. Cardiol. 81, 22–26 (1998).

    Article  CAS  Google Scholar 

  9. Mackman, N. Role of tissue factor in hemostasis, thrombosis, and vascular development. Arterioscler. Thromb. Vasc. Biol. 24, 1015–1022 (2004).

    Article  CAS  Google Scholar 

  10. Meadows, T. A. & Bhatt, D. L. Clinical aspects of platelet inhibitors and thrombus formation. Circ. Res. 100, 1261–1275 (2007). This recent review describes the targets of the various antiplatelet drugs and their clinical use.

    Article  CAS  Google Scholar 

  11. Gilbert, J. C. et al. First-in-human evaluation of anti von Willebrand factor therapeutic aptamer ARC1779 in human volunteers. Circulation 116, 2678–2686 (2007).

    Article  CAS  Google Scholar 

  12. Oney, E. S. et al. Antidote-controlled platelet inhibition targeting von Willebrand factor with aptamers. Oligonucleotides 17, 265–274 (2007).

    Article  CAS  Google Scholar 

  13. Lord, S. T. Fibrinogen and fibrin: scaffold proteins in hemostasis. Curr. Opin. Hematol. 14, 236–241 (2007).

    Article  CAS  MathSciNet  Google Scholar 

  14. Intracerebral hemorrhage after intravenous t-PA therapy for ischemic stroke. Stroke 28, 2109–2118 (1997).

  15. Brass, L. F., Zhu, L. & Stalker, T. J. Minding the gaps to promote thrombus growth and stability. J. Clin. Invest. 115, 3385–3392 (2005).

    Article  CAS  Google Scholar 

  16. Febbraio, M., Hajjar, D. P. & Silverstain, R. L. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin. Invest. 108, 785–791 (2001).

    Article  CAS  Google Scholar 

  17. Podrez, E. A. et al. Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype. J Clin. Invest 13, 1086–1095 (2007). This paper shows that oxidized low-density lipoproteins activate platelets by binding to CD36, providing a possible explanation for the link between hyperlipidaemia and thrombosis.

    CAS  Google Scholar 

  18. Ratnikov, B. I., Partridge, A. W. & Ginsberg, M. H. Integrin activation by talin. J. Thromb. Haemost. 3, 1783–1790 (2007).

    Article  Google Scholar 

  19. Petrich, B. G. et al. The antithrombotic potential of selective blockade of talin-dependent integrin αIIbβ3 (platelet GPIIb-IIIa) activation. J Clin. Invest. 117, 2250–2259 (2007).

    Article  CAS  Google Scholar 

  20. Babapulle, M. N., Joseph, L., Belisle, P., Brophy, J. M. & Eisenberg, M. J. A hierarchical Bayesian meta-analysis of randomised clinical trials of drug-eluting stents. Lancet 364, 583–591 (2004).

    Article  CAS  Google Scholar 

  21. Finn, A. V. et al. Pathological correlates of late drug-eluting stent thrombosis: strut coverage as a marker of endothelialization. Circulation 115, 2435–2441 (2007).

    Article  Google Scholar 

  22. Bavry, A. A. et al. Late thrombosis of drug-eluting stents: a meta-analysis of randomized clinical trials. Am. J. Med. 119, 1056–1061 (2006).

    Article  CAS  ADS  Google Scholar 

  23. Wiviott, S. et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 357, 2001–2015 (2007). This paper describes the results of a recent clinical trial of prasugrel, a new antiplatelet drug.

    Article  CAS  Google Scholar 

  24. Virchow, R. Gesammelte Abhandlungen zur Wissenschaftlichen Medizin (Meidinger, Frankfurt, 1856).

    Google Scholar 

  25. Cushman, M. Epidemiology and risk factors for venous thrombosis. Semin. Hematol. 44, 62–69 (2007).

    Article  Google Scholar 

  26. Heit, J. A. Venous thromboembolism: disease burden, outcomes and risk factors. J. Thromb. Haemost. 3, 1611–1617 (2007).

    Article  Google Scholar 

  27. Segers, K., Dahlback, B. & Nicolaes, G. A. Coagulation factor V and thrombophilia: background and mechanisms. Thromb. Haemost. 98, 530–542 (2007).

    Article  CAS  Google Scholar 

  28. Hron, G. et al. Tissue factor-positive microparticles: cellular origin and association with coagulation activation in patients with colorectal cancer. Thromb. Haemost. 97, 119–123 (2007).

    Article  CAS  Google Scholar 

  29. Tesselaar, M. E. et al. Microparticle-associated tissue factor activity: a link between cancer and thrombosis? J. Thromb. Haemost. 5, 520–527 (2007).

    Article  CAS  Google Scholar 

  30. Polgar, J., Matuskova, J. & Wagner, D. D. The P-selectin, tissue factor, coagulation triad. J. Thromb. Haemost. 3, 1590–1596 (2005).

    Article  CAS  Google Scholar 

  31. Weitz, J. I. & Linkins, L. A. Beyond heparin and warfarin: the new generation of anticoagulants. Expert Opin. Investig. Drugs 16, 271–282 (2007).

    Article  CAS  Google Scholar 

  32. Hirsh, J., O'Donnell, M. & Eikelboom, J. W. Beyond unfractionated heparin and warfarin: current and future advances. Circulation 116, 552–560 (2007). This review summarizes the anticoagulants that are in clinical use and the development of new anticoagulant drugs.

    Article  CAS  Google Scholar 

  33. Eriksson, B. I. et al. Oral rivaroxaban compared with subcutaneous enoxaparin for extended thromboprohylaxis after total hip arthroplasty. Blood 110, abstr. 6 (2007). This abstract describes the recent clinical trial assessing the effect of the factor-Xa inhibitor rivaroxaban on rates of thrombosis.

    Article  Google Scholar 

  34. Snyder, L. A. et al. Expression of human tissue factor under the control of the mouse tissue factor promoter mediates normal hemostasis in knock-in mice. J. Thromb. Haemost. 6, 306–314 (2008).

    Article  CAS  Google Scholar 

  35. Mackman, N. Tissue-specific hemostasis in mice. Arterioscler. Thromb. Vasc. Biol. 25, 2273–2281 (2005).

    Article  CAS  Google Scholar 

  36. Bolton-Maggs, P. H. & Pasi, K. J. Haemophilias A and B. Lancet 361, 1801–1809 (2003).

    Article  CAS  Google Scholar 

  37. Galiani, D. & Renne, T. The intrinsic pathway of coagulation: a target for treating thromboembolic disease? J. Thromb. Haemost. 5, 1106–1112 (2007).

    Article  Google Scholar 

  38. Howard, E. L., Becker, C. D., Rusconi, C. P. & Becker, R. C. Factor IXa inhibitors as novel anticoagulants. Arterioscler. Thromb. Vasc. Biol. 27, 722–727 (2007).

    Article  CAS  Google Scholar 

  39. Weitz, J. I. & Buller, H. R. Direct thrombin inhibitors in acute coronary syndromes: present and future. Circulation 105, 1004–1011 (2002).

    Article  CAS  Google Scholar 

  40. Turpie, A. G. Oral, direct factor Xa inhibitors in development for the prevention and treatment of thromboembolic diseases. Arterioscler. Thromb. Vasc. Biol. 27, 1238–1247 (2007).

    Article  CAS  Google Scholar 

  41. Li, W. X., Kaplan, A. V., Grant, G. W., Toole, J. J. & Leung, L. L. A novel nucleotide-based thrombin inhibitor inhibits clot-bound thrombin and reduces arterial platelet thrombus formation. Blood 83, 677–682 (1994).

    CAS  PubMed  Google Scholar 

  42. Rusconi, C. P. et al. RNA aptamers as reversible antagonists of coagulation factor IXa. Nature 419, 90–94 (2002).

    Article  CAS  ADS  Google Scholar 

  43. Rusconi, C. P. et al. Antidote-mediated control of an anticoagulant aptamer in vivo. Nature Biotechnol. 22, 1423–1428 (2004). This paper describes the use of an aptamer targeting factor IXa and an 'antidote' oligonucleotide for the treatment of thrombosis.

    Article  CAS  Google Scholar 

  44. Dyke, C. K. et al. First-in-human experience of an antidote-controlled anticoagulant using RNA aptamer technology: a phase 1a pharmacodynamic evaluation of a drug–antidote pair for the controlled regulation of factor IXa activity. Circulation 114, 2490–2497 (2006).

    Article  CAS  Google Scholar 

  45. Monia, B. et al. ISIS 401025, a second generation antisense oligonucleotide targeting prothrombin, inhibits plasma prothrombin level and promotes anticoagulation in mice. Circulation 116 (suppl.), abstr. 716 (2007).

    Google Scholar 

  46. Berger, J. S. et al. Aspirin for the primary prevention of cardiovascular events in women and men: a sex-specific meta-analysis of randomized controlled trials. J. Am. Med. Assoc. 295, 306–313 (2006).

    Article  CAS  Google Scholar 

  47. Hennekens, C. H., Sechenova, O., Hollar, D. & Serebruary, V. L. Dose of aspirin in the treatment and prevention of cardiovascuar disease: current and future directions. J. Cardiovasc. Pharmacol. Ther. 11, 170–176 (2006).

    Article  CAS  Google Scholar 

  48. Grosser, T., Fries, S. & FitzGerald, G. A. Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. J. Clin. Invest. 116, 4–15 (2006).

    Article  CAS  Google Scholar 

  49. Gachet, C. The platelet P2 receptors as molecular targets for old and new antiplatelet drugs. Pharmacol. Ther. 108, 180–192 (2005).

    Article  CAS  Google Scholar 

  50. The Clopidogrel in Unstable Angina To Prevent Recurrent Events Trial Investigators. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N. Engl. J. Med. 345, 494–502 (2007).

  51. Sabatine, M. S. et al. Effect of clopidogrel pretreatment before percutaneous coronary intervention in patients with ST-elevation myocardial infarction treated wilth fibrinolytics. J. Am. Med. Assoc. 294, 1224–1232 (2005).

    Article  CAS  Google Scholar 

  52. Kong, D. F. et al. Clinical outcomes of therapeutic agents that block the platelet glycoprotein IIb/IIIa integrin in ischemic heart disease. Circulation 98, 2829–2835 (1998).

    Article  CAS  Google Scholar 

  53. Palareti, G. et al. Bleeding complications of oral anticoagulant treatment: an inception-cohort, prospective collaborative study (ISCOAT). Lancet 348, 423–428 (1996).

    Article  CAS  Google Scholar 

  54. Krynetskly, E. Building individualized medicine: prevention of adverse reactions to warfarin therapy. J. Pharmacol. Exp. Ther. 322, 427–434 (2007).

    Article  Google Scholar 

  55. Quinlan, D. J., McQuillan, A. & Eikelboom, J. W. Low-molecular-weight heparin compared with intravenous unfractionated heparin for the treatment of pulmonary embolism: a meta-analysis of randomized, controlled trials. Ann. Intern. Med. 140, 175–183 (2004).

    Article  CAS  Google Scholar 

  56. Turpie, A. G., Eriksson, B. I., Lassen, M. R. & Bauer, K. A. Fondaparinux, the first selective factor Xa inhibitor. Curr. Opin. Hematol. 10, 327–332 (2003).

    Article  Google Scholar 

  57. Cines, D.B. et al. Heparin-induced thrombocytopenia: an autoimmune disorder regulated through dynamic autoantigen assembly/disassembly. J. Clin. Apher. 22, 31–36 (2007).

    Article  Google Scholar 

  58. Eriksson, B. I. et al. Dabigatran etexilate versus enoxaparin for prevention of venous thromboembolism after total hip replacement: a randomised, double-blind, non-inferiority trial. Lancet 370, 949–956 (2007).

    Article  CAS  Google Scholar 

  59. Fisher, W. D. et al. Rivaroxaban for thromboprophylaxis after orthopaedic therapy: pooled analysis of two studies. Thromb. Haemost. 97, 931–937 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank N. Key, R. Kasthuri and R. Stouffer for suggestions during preparation of the manuscript, and F. Church, J. Luyendyk, W. Biosvert and C. Mackman for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

N.M. is a consultant for Daiichi Sankyo.

Additional information

Correspondence should be addressed to the author (nmackman@med.unc.edu).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mackman, N. Triggers, targets and treatments for thrombosis. Nature 451, 914–918 (2008). https://doi.org/10.1038/nature06797

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06797

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing