Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

SAR11 marine bacteria require exogenous reduced sulphur for growth

Abstract

Sulphur is a universally required cell nutrient found in two amino acids and other small organic molecules. All aerobic marine bacteria are known to use assimilatory sulphate reduction to supply sulphur for biosynthesis, although many can assimilate sulphur from organic compounds that contain reduced sulphur atoms1,2,3. An analysis of three complete ‘Candidatus Pelagibacter ubique’ genomes, and public ocean metagenomic data sets, suggested that members of the ubiquitous and abundant SAR11 alphaproteobacterial clade are deficient in assimilatory sulphate reduction genes. Here we show that SAR11 requires exogenous sources of reduced sulphur, such as methionine or 3-dimethylsulphoniopropionate (DMSP) for growth. Titrations of the algal osmolyte DMSP in seawater medium containing all other macronutrients in excess showed that 1.5 × 108 SAR11 cells are produced per nanomole of DMSP. Although it has been shown that other marine alphaproteobacteria use sulphur from DMSP in preference to sulphate1,2, our results indicate that ‘Cand. P. ubique’ relies exclusively on reduced sulphur compounds that originate from other plankton.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sulphur metabolism pathways and comparative genomics.
Figure 2: 35 S radiotracer uptake and growth responses to additions of sulphur compounds.
Figure 3: Growth curves for 21-nM additions of various reduced sulphur sources.

Similar content being viewed by others

References

  1. Kiene, R. P., Linn, L. J., Gonzalez, J., Moran, M. A. & Bruton, J. A. Dimethylsulfoniopropionate and methanethiol are important precursors of methionine and protein-sulfur in marine bacterioplankton. Appl. Environ. Microbiol. 65, 4549–4558 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Cuhel, R. L., Taylor, C. D. & Jannasch, H. W. Assimilatory sulfur metabolism in marine microorganisms: sulfur metabolism, protein synthesis, and growth of Alteromonas luteo-violaceus and Pseudomonas halodurans during perturbed batch growth. Appl. Environ. Microbiol. 43, 151–159 (1982)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Cottrell, M. T. & Kirchman, D. L. Natural assemblages of marine proteobacteria and members of the Cytophaga–Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl. Environ. Microbiol. 66, 1692–1697 (2000)

    Article  CAS  Google Scholar 

  4. Morris, R. M. et al. SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420, 806–810 (2002)

    Article  CAS  ADS  Google Scholar 

  5. Street, J. H. & Paytan, A. Iron, phytoplankton growth, and the carbon cycle. Met. Ions Biol. Syst. 43, 153–193 (2005)

    CAS  PubMed  Google Scholar 

  6. Schut, F. et al. Isolation of typical marine bacteria by dilution culture: growth, maintenance, and characteristics of isolates under laboratory conditions. Appl. Environ. Microbiol. 59, 2150–2160 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Neumann, S., Wynen, A., Truper, H. G. & Dahl, C. Characterization of the cys gene locus from Allochromatium vinosum indicates an unusual sulfate assimilation pathway. Mol. Biol. Rep. 27, 27–33 (2000)

    Article  CAS  Google Scholar 

  8. Ruckert, C. et al. Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction. BMC Genomics 6, 121 (2005)

    Article  Google Scholar 

  9. Alm, E. J. et al. The MicrobesOnline Web site for comparative genomics. Genome Res. 15, 1015–1022 (2005)

    Article  CAS  Google Scholar 

  10. Berndt, C. et al. Characterization and reconstitution of a 4Fe-4S adenylyl sulfate/phosphoadenylyl sulfate reductase from Bacillus subtilis. J. Biol. Chem. 279, 7850–7855 (2004)

    Article  CAS  Google Scholar 

  11. Heinzinger, N. K., Fujimoto, S. Y., Clark, M. A., Moreno, M. S. & Barrett, E. L. Sequence analysis of the phs operon in Salmonella typhimurium and the contribution of thiosulfate reduction to anaerobic energy metabolism. J. Bacteriol. 177, 2813–2820 (1995)

    Article  CAS  Google Scholar 

  12. Malmstrom, R. R., Kiene, R. P., Cottrell, M. T. & Kirchman, D. L. Contribution of SAR11 bacteria to dissolved dimethylsulfoniopropionate and amino acid uptake in the North Atlantic ocean. Appl. Environ. Microbiol. 70, 4129–4135 (2004)

    Article  CAS  Google Scholar 

  13. Howard, E. C. et al. Bacterial taxa that limit sulfur flux from the ocean. Science 314, 649–652 (2006)

    Article  CAS  ADS  Google Scholar 

  14. Todd, J. D. et al. Structural and regulatory genes required to make the gas dimethyl sulfide in bacteria. Science 315, 666–669 (2007)

    Article  CAS  ADS  Google Scholar 

  15. Kiene, R. P. & Linn, L. J. The fate of dissolved dimethylsulfoniopropionate (DMSP) in seawater: Tracer studies using S-35-DMSP. Geochim. Cosmochim. Acta 64, 2797–2810 (2000)

    Article  CAS  ADS  Google Scholar 

  16. Nicastro, D. et al. Three-dimensional structure of the tiny bacterium Pelagibacter ubique studied by cryo-electron tomography. Microsc. Microanal. 12, 180–181 (2006)

    Article  ADS  Google Scholar 

  17. Simo, R., Archer, S. D., Pedros-Alio, C., Gilpin, L. & Stelfox-Widdicombe, C. E. Coupled dynamics of dimethylsulfoniopropionate and dimethylsulfide cycling and the microbial food web in surface waters of the North Atlantic. Limnol. Oceanogr. 47, 53–61 (2002)

    Article  CAS  ADS  Google Scholar 

  18. Zubkov, M. V. et al. Rapid turnover of dissolved DMS and DMSP by defined bacterioplankton communities in the stratified euphotic zone of the North Sea. Deep-Sea Res. II 49, 3017–3038 (2002)

    Article  CAS  ADS  Google Scholar 

  19. Lippert, K. D. & Pfennig, N. Utilisation of molecular hydrogen by Chlorobium thiosulfatophilum. Growth and CO2-fixation. Arch. Mikrobiol. 65, 29–47 (1969)

    Article  CAS  Google Scholar 

  20. Glaeser, J. & Overmann, J. Selective enrichment and characterization of Roseospirillum parvum, gen. nov. and sp. nov., a new purple nonsulfur bacterium with unusual light absorption properties. Arch. Microbiol. 171, 405–416 (1999)

    Article  CAS  Google Scholar 

  21. Ventura, S., De Philippis, R., Materassi, R. & Balloni, W. Two halophilic Ectothiorhodospira strains with unusual morphological, physiological and biochemical characters. Arch. Microbiol. 149, 273–279 (1988)

    Article  CAS  Google Scholar 

  22. Daniels, L., Belay, N. & Rajagopal, B. S. Assimilatory reduction of sulfate and sulfite by methanogenic bacteria. Appl. Environ. Microbiol. 51, 703–709 (1986)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. van Ham, R. C. et al. Reductive genome evolution in Buchnera aphidicola. Proc. Natl Acad. Sci. USA 100, 581–586 (2003)

    Article  CAS  ADS  Google Scholar 

  24. Hou, S. et al. Genome sequence of the deep-sea gamma-proteobacterium Idiomarina loihiensis reveals amino acid fermentation as a source of carbon and energy. Proc. Natl Acad. Sci. USA 101, 18036–18041 (2004)

    Article  CAS  ADS  Google Scholar 

  25. Giovannoni, S. J. et al. Genome streamlining in a cosmopolitan oceanic bacterium. Science 309, 1242–1245 (2005)

    Article  CAS  ADS  Google Scholar 

  26. Rappe, M. S., Connon, S. A., Vergin, K. L. & Giovannoni, S. J. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418, 630–633 (2002)

    Article  CAS  ADS  Google Scholar 

  27. Connon, S. A. & Giovannoni, S. J. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl. Environ. Microbiol. 68, 3878–3885 (2002)

    Article  CAS  Google Scholar 

  28. Stingl, U., Tripp, H. J. & Giovannoni, S. J. Improvements of high-throughput culturing yielded novel SAR11 strains and other abundant marine bacteria from the Oregon coast and the Bermuda Atlantic Time Series study site. ISME J 1, 361–371 (2007)

    Article  CAS  Google Scholar 

  29. Peterson, J. D., Umayam, L. A., Dickinson, T., Hickey, E. K. & White, O. The comprehensive microbial resource. Nucleic Acids Res. 29, 123–125 (2001)

    Article  CAS  Google Scholar 

  30. Bernal, A., Ear, U. & Kyrpides, N. Genomes OnLine Database (GOLD): a monitor of genome projects world-wide. Nucleic Acids Res. 29, 126–127 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank U. Stingl, C. Carlson and A. Treusch for discussions, R. Kiene for 35S[DMSP], and K. Vergin for assistance with radiotracers. This work was supported by grants from the Marine Microbiology Initiative of the Gordon and Betty Moore Foundation and the National Science Foundation.

Author Contributions H.J.T. conducted genome analysis, adaptation of Guava EasyCyte to marine picoplankton counting, initial experimental design, preliminary data collection and analysis, and wrote the manuscript. J.B.K. set up, performed, and collected data for many culture experiments, and assisted in EasyCyte adaptations. J.W.H.D. provided DMSP and DMSP measurements. L.J.W. performed metagenomics. S.J.G. initiated the study, suggested candidate nutrients for testing, and with M.S.S. suggested final experiments and data presentation. All authors reviewed the manuscript before submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Giovannoni.

Supplementary information

Supplementary Information

The file contains Supplementary Methods, Supplementary Notes, Supplementary Figures 1-4 with Legends and Supplementary Table 1 with Legend. The Supplementary Methods describe the search for sulphate reduction genes. The Supplementary Notes describe cell size and morphology, identify putative genes and metabolic pathways for sulphur metabolism, and demonstrate the infeasibility of 35SO4 uptake experiments, other sources of reduced sulfur in the oceanic water column, and consistency of cell morphology and size. The Supplementary Figures and Tables are included within the notes. (PDF 195 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripp, H., Kitner, J., Schwalbach, M. et al. SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature 452, 741–744 (2008). https://doi.org/10.1038/nature06776

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06776

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing