Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Microscopic theory of the extraordinary optical transmission


The phenomenon of extraordinary light transmission through metallic films perforated by nanohole arrays at optical frequencies was first observed a decade ago1 and initiated important further experimental and theoretical work. In view of potential applications of such structures—for example, subwavelength optics2,3, optoelectronics devices4,5, and chemical sensing6—it is important to understand the underlying physical processes in detail. Here we derive a microscopic theory of the transmission through subwavelength hole arrays, by considering the elementary processes associated with scattering of surface-plasmon-polariton (SPP) modes by individual one-dimensional chains of subwavelength holes. Using a SPP coupled-mode model that coherently gathers these elementary processes, we derive analytical expressions for all the transmission spectrum characteristics—such as the resonance wavelength, the peak transmission and the anti-resonance. Further comparisons of the model predictions with fully vectorial computational results allow us quantitatively to check the model accuracy and to discuss the respective impacts of SPP modes and of other electromagnetic fields on producing the extraordinary transmission of light. The model greatly expands our understanding of the phenomenon and may affect further engineering of nanoplasmonic devices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Elementary processes involved in the EOT.
Figure 2: Comparison between the SPP model predictions and fully vectorial (RCWA) computation data obtained for the EOT of a gold hole-array membrane in air.
Figure 3: Surface waves generated on a gold surface by a single hole chain, illuminated by a normally incident plane wave polarized along the x axis with a unitary magnetic field at the gold surface.


  1. 1

    Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998)

    CAS  Article  ADS  Google Scholar 

  2. 2

    Alkaisi, M. M., Blaikie, R. J., McNab, S. J., Cheung, R. & Cumming, D. R. S. Sub-diffraction-limited patterning using evanescent near-field optical lithography. Appl. Phys. Lett. 75, 3560–3562 (1999)

    CAS  Article  ADS  Google Scholar 

  3. 3

    Luo, X. G. & Ishihara, T. Sub-100-nm photolithography based on plasmon resonance. Jap. J. Appl. Phys. 43, 4017–4021 (2004)

    CAS  Article  ADS  Google Scholar 

  4. 4

    Collin, S., Pardo, F. & Pelouard, J. L. Resonant-cavity-enhanced subwavelength metal-semiconductor-metal photodetector. Appl. Phys. Lett. 83, 1521–1523 (2003)

    CAS  Article  ADS  Google Scholar 

  5. 5

    Liu, C., Kamaev, V. & Vardeny, Z. V. Efficiency enhancement of an organic light emitting diode with a cathode forming two-dimensional periodic hole array. Appl. Phys. Lett. 86, 143501 (2005)

    Article  ADS  Google Scholar 

  6. 6

    Genet, C. & Ebbesen, T. W. Light in tiny holes. Nature 445, 39–46 (2007)

    CAS  Article  ADS  Google Scholar 

  7. 7

    Martin-Moreno, L. et al. Theory of extraordinary optical transmission through subwavelength hole arrays. Phys. Rev. Lett. 86, 1114–1117 (2001)

    CAS  Article  ADS  Google Scholar 

  8. 8

    Pendry, J. B., Martin-Moreno, L. & Garcia-Vidal, J. F. Mimicking surface plasmons with structured surfaces. Science 305, 847–848 (2004)

    CAS  Article  ADS  Google Scholar 

  9. 9

    García de Abajo, F. J. & Sáenz, J. J. Electromagnetic surface modes in structured perfect-conductor surfaces. Phys. Rev. Lett. 95, 233901 (2005)

    Article  ADS  Google Scholar 

  10. 10

    Lalanne, P., Rodier, J. C. & Hugonin, J. P. Surface plasmons of metallic surfaces perforated by nanohole arrays. J. Opt. Pure Appl. Opt. 7, 422–426 (2005)

    CAS  Article  ADS  Google Scholar 

  11. 11

    Genet, C., van Exter, M. P. & Woerdman, J. P. Huygens description of resonance phenomena in subwavelength hole arrays. J. Opt. Soc. Am. A 22, 998–1002 (2005)

    Article  ADS  Google Scholar 

  12. 12

    Silberstein, E., Lalanne, P., Hugonin, J. P. & Cao, Q. On the use of grating theory in integrated optics. J. Opt. Soc. Am. A 18, 2865–2875 (2001)

    CAS  Article  ADS  Google Scholar 

  13. 13

    Snyder, A. W. & Love, J. D. Optical Waveguide Theory 602–608 (Chapman and Hall, London/New York, 1983)

    Google Scholar 

  14. 14

    Palik, E. D. Handbook of Optical Constants of Solids Part II (Academic, New York, 1985)

    Google Scholar 

  15. 15

    Barnes, W. L., Murray, W. A., Dintinger, J., Devaux, E. & Ebbesen, T. W. Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. Phys. Rev. Lett. 92, 107401 (2004)

    CAS  Article  ADS  Google Scholar 

  16. 16

    Ye, Y.-H. & Zhang, J.-Y. Middle-infrared transmission enhancement through periodically perforated metal films. Appl. Phys. Lett. 84, 2977–2979 (2004)

    CAS  Article  ADS  Google Scholar 

  17. 17

    Lalanne, P., Hugonin, J. P. & Rodier, J. C. Theory of surface plasmon generation at nanoslit apertures. Phys. Rev. Lett. 95, 263902 (2005)

    CAS  Article  ADS  Google Scholar 

  18. 18

    Lezec, H. J. & Thio, T. Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays. Opt. Express 12, 3629–3641 (2004)

    Article  ADS  Google Scholar 

  19. 19

    Gay, G. et al. The optical response of nanostructured surfaces and the composite diffracted evanescent wave model. Nature Phys. 2, 262–267 (2006)

    CAS  Article  ADS  Google Scholar 

  20. 20

    Lalanne, P. & Hugonin, J. P. Interaction between optical nano-objects at metallo-dielectric interfaces. Nature Phys. 2, 551–556 (2006)

    CAS  Article  ADS  Google Scholar 

  21. 21

    Aigouy, L. et al. Near-field analysis of surface waves launched at nano-slit apertures. Phys. Rev. Lett. 98, 153902 (2007)

    CAS  Article  ADS  Google Scholar 

  22. 22

    Boersma, J. & Lee, S. W. An exact solution for diffraction of a line-source field by a half-plane. J. Math. Phys. 18, 321–328 (1977)

    MathSciNet  Article  ADS  Google Scholar 

  23. 23

    García-Vidal, F. J., Rodrigo, S. G. & Martín-Moreno, L. Foundations of the composite diffracted evanescent wave model. Nature Phys. 2, 790 (2006)

    Article  ADS  Google Scholar 

  24. 24

    Gomez Rivas, J., Schotsch, C., Haring Bolivar, P. & Kurz, H. Enhanced transmission of THz radiation through subwavelength holes. Phys. Rev. B 68, 201306(R) (2003)

    Article  ADS  Google Scholar 

  25. 25

    Shou, X., Agrawal, A. & Nahata, A. Role of metal thickness on the enhanced transmission properties of a periodic array of subwavelength apertures. Opt. Express 13, 9834–9840 (2005)

    Article  ADS  Google Scholar 

Download references


H.L. acknowledges a fellowship of the “Fondation Franco-Chinoise pour la Science et ses Applications” (FFCSA) and the China Scholarship Council (CSC). We thank J. P. Hugonin for discussions and computational assistance.

Author information



Corresponding author

Correspondence to Philippe Lalanne.

Supplementary information

Supplementary information

The file contains Supplementary Discussion and additional references. (PDF 1602 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, H., Lalanne, P. Microscopic theory of the extraordinary optical transmission. Nature 452, 728–731 (2008).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing