Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Super-chondritic Sm/Nd ratios in Mars, the Earth and the Moon


Small isotopic differences in the atomic abundance of neodymium-142 (142Nd) in silicate rocks represent the time-averaged effect of decay of formerly live samarium-146 (146Sm) and provide constraints on the timescales and mechanisms by which planetary mantles first differentiated1,2,3,4. This chronology, however, assumes that the composition of the total planet is identical to that of primitive undifferentiated meteorites called chondrites. The difference in the 142Nd/144Nd ratio between chondrites and terrestrial samples may therefore indicate very early isolation (<30 Myr from the formation of the Solar System) of the upper mantle or a slightly non-chondritic bulk Earth composition5,6. Here we present high-precision 142Nd data for 16 martian meteorites and show that Mars also has a non-chondritic composition. Meteorites belonging to the shergottite subgroup define a planetary isochron yielding an age of differentiation of 40 ± 18 Myr for the martian mantle. This isochron does not pass through the chondritic reference value (100 × ε142Nd = -21 ± 3; 147Sm/144Nd = 0.1966)6. The Earth, Moon and Mars all seem to have accreted in a portion of the inner Solar System with 5 per cent higher Sm/Nd ratios than material accreted in the asteroid belt. Such chemical heterogeneities may have arisen from sorting of nebular solids or from impact erosion of crustal reservoirs in planetary precursors. The 143Nd composition of the primitive mantle so defined by 142Nd is strikingly similar to the putative endmember component ‘FOZO’ characterized by high 3He/4He ratios7,8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The ε 142 Nd signatures of martian meteorites, lunar samples and eucrites compared with the composition of chondrites and terrestrial samples.
Figure 2: Planetary isochrons for Mars, Vesta5 and the Moon4 compared with terrestrial3 12 and chondritic compositions5 6.

Similar content being viewed by others


  1. Harper, C. L. & Jacobsen, S. B. Evidence from coupled 147Sm–143Nd and 146Sm–142Nd systematics for very early (4.5 Gyr) differentiation of the Earth's mantle. Nature 360, 728–732 (1992)

    Article  ADS  CAS  Google Scholar 

  2. Harper, C. L., Nyquist, L. E., Bansal, B., Wiesmann, H. & Shih, C.-Y. Rapid accretion and early differentiation of Mars indicated by 142Nd/144Nd in SNC meteorites. Science 267, 213–217 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Caro, G., Bourdon, B., Birck, J.-L. & Moorbath, S. 146Sm–142Nd evidence for early differentiation of the Earth's mantle. Nature 423, 428–432 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Nyquist, L. E. et al. 146Sm–142Nd formation interval for the lunar mantle. Geochim. Cosmochim. Acta 13, 2817–2837 (1995)

    Article  ADS  Google Scholar 

  5. Boyet, M. & Carlson, R. W. 142Nd evidence for early (&gt;4.53 Ga) global differentiation of the silicate Earth. Science 309, 576–581 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Carlson, R. W., Boyet, M. & Horan, M. Chondrite barium, neodymium and samarium isotopic heterogeneity and early Earth differentiation. Science 316, 1175–1178 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Hart, S. R., Hauri, H. E., Oschmann, L. A. & Whitehead, J. A. Mantle plumes and entrainment: Isotopic evidence. Science 256, 517–520 (1992)

    ADS  CAS  PubMed  Google Scholar 

  8. Stracke, A., Hofmann, A. W. & Hart, S. R. FOZO, HIMU, and the rest of the mantle zoo. Geochem. Geophys. Geosyst. 6 Q05007 10.1029/2004GC000824 (2005)

    Article  ADS  CAS  Google Scholar 

  9. Prinzhofer, D. A., Papanastassiou, D. A. & Wasserburg, G. J. Samarium–neodymium evolution of meteorites. Geochim. Cosmochim. Acta 56, 797–815 (1992)

    Article  ADS  CAS  Google Scholar 

  10. Ranen, M. C. & Jacobsen, S. B. Barium isotopes in chondritic meteorites: Implications for planetary reservoir models. Science 314, 809–812 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Andreasen, R. & Sharma, M. Solar nebula heterogeneity in p-process samarium and neodymium isotopes. Science 314, 806–809 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Caro, G., Bourdon, B., Birck, J.-L. & Moorbath, S. High-precision 142Nd/144Nd measurements in terrestrial rocks: Constraints on the early differentiation of the Earth's mantle. Geochim. Cosmochim. Acta 70, 164–191 (2006)

    Article  ADS  CAS  Google Scholar 

  13. Caro, G., Bourdon, B., Wood, B. J. & Corgne, A. Trace element fractionation generated by melt segregation from a magma ocean. Nature 436, 246–249 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Bourdon, B. & Caro, G. The early terrestrial crust. C. R. Geosci. 339, 928–936 (2007)

    Article  CAS  Google Scholar 

  15. Andreasen, R., Sharma, M., Subbarao, K. V. & Viladkar, S. G. Where on Earth is the enriched Hadean reservoir? Earth Planet. Sci. Lett. 266, 14–28 (2007)

    Article  ADS  Google Scholar 

  16. Boyet, M. & Carlson, R. W. A new geochemical model for the Earth's mantle inferred from 146Sm–142Nd systematics. Earth Planet. Sci. Lett. 250, 254–268 (2006)

    Article  ADS  CAS  Google Scholar 

  17. Jagoutz, E. Chronology of SNC meteorites. Space Sci. Rev. 56, 13–22 (1991)

    Article  ADS  Google Scholar 

  18. Foley, C. N. et al. The early differentiation history of Mars from 182W-142Nd isotope systematics in the SNC meteorites. Geochim. Cosmochim. Acta 69, 4557–4571 (2005)

    Article  ADS  CAS  Google Scholar 

  19. Borg, L. E., Nyquist, L. E., Wiesmann, H., Shih, C.-Y. & Reese, Y. The age of Dar al Gani 476 and the differentiation history of the martian meteorites inferred from their radiogenic isotopic systematics. Geochim. Cosmochim. Acta 67, 3519–3536 (2003)

    Article  ADS  CAS  Google Scholar 

  20. Jagoutz, E., Jotter, R. & Dreibus, G. Evolution of six SNC meteorites with anomalous neodymium-142. Meteor. Planet. Sci. 35, A83–A84 (abstr.) (2000)

    Google Scholar 

  21. Lee, D.-C. & Halliday, A. N. Core formation on Mars and differentiated asteroids. Nature 388, 854–857 (1997)

    Article  ADS  CAS  Google Scholar 

  22. Debaille, V., Brandon, A. D., Yin, Q. Z. & Jacobsen, B. Coupled 142Nd–143Nd evidence for a protracted magma ocean in Mars. Nature 450, 525–528 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Kleine, T., Mezger, K., Munker, C., Palme, H. & Bischoff, A. 182Hf–182W isotope systematics of chondrites, eucrites, and martian meteorites: Chronology of core formation and early differentiation in Vesta and Mars. Geochim. Cosmochim. Acta 68, 2935–2946 (2004)

    Article  ADS  CAS  Google Scholar 

  24. Rankenburg, K., Brandon, A. D. & Neal, C. R. Neodymium isotope evidence for a chondritic composition of the Moon. Science 312, 1369–1372 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Boyet, M. & Carlson, R. W. A highly depleted moon or a non-magma ocean origin for the lunar crust? Earth Planet. Sci. Lett. 262, 505–516 (2007)

    Article  ADS  CAS  Google Scholar 

  26. Jacobsen, S. B. & Wasserburg, G. J. Sm–Nd evolution of chondrites and achondrites, II. Earth Planet. Sci. Lett. 67, 137–150 (1984)

    Article  ADS  CAS  Google Scholar 

  27. Hewins, R. H. & Herzberg, C. T. Nebular turbulence, chondrule formation, and the composition of the Earth. Earth Planet. Sci. Lett. 144, 1–7 (1996)

    Article  ADS  CAS  Google Scholar 

  28. Cuzzi, J. N., Hogan, R. C., Paque, J. M. & Dobrovolskis, A. R. Size-selective concentration of chondrules and other small particles in protoplanetary nebula turbulence. Astrophys. J. 546, 496–508 (2001)

    Article  ADS  Google Scholar 

  29. Agnor, C. & Asphaug, E. Accretion efficiency during planetary collisions. Astrophys. J. 613, L157–L160 (2004)

    Article  ADS  Google Scholar 

  30. Kellogg, J. B., Jacobsen, S. B. & O'Connell, J. Modeling the distribution of isotopic ratios in geochemical reservoirs. Earth Planet. Sci. Lett. 304, 183–202 (2002)

    Article  ADS  Google Scholar 

Download references


We thank T. Kleine for critical discussion and an informal review of the manuscript, and S. Jacobsen for a constructive review. This study was supported by the CNRS research programme PNP.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Guillaume Caro.

Supplementary information

Supplementary Information

The file contains Supplementary Tables S1-S2, Supplementary Figure S1 with Legend and additional references. (PDF 433 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caro, G., Bourdon, B., Halliday, A. et al. Super-chondritic Sm/Nd ratios in Mars, the Earth and the Moon. Nature 452, 336–339 (2008).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing