Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Molecular identification of a retinal cell type that responds to upward motion

Abstract

The retina contains complex circuits of neurons that extract salient information from visual inputs. Signals from photoreceptors are processed by retinal interneurons, integrated by retinal ganglion cells (RGCs) and sent to the brain by RGC axons. Distinct types of RGC respond to different visual features, such as increases or decreases in light intensity (ON and OFF cells, respectively), colour or moving objects1,2,3,4,5. Thus, RGCs comprise a set of parallel pathways from the eye to the brain. The identification of molecular markers for RGC subsets will facilitate attempts to correlate their structure with their function, assess their synaptic inputs and targets, and study their diversification. Here we show, by means of a transgenic marking method, that junctional adhesion molecule B (JAM-B) marks a previously unrecognized class of OFF RGCs in mice. These cells have asymmetric dendritic arbors aligned in a dorsal-to-ventral direction across the retina. Their receptive fields are also asymmetric and respond selectively to stimuli moving in a soma-to-dendrite direction; because the lens reverses the image of the world on the retina, these cells detect upward motion in the visual field. Thus, JAM-B identifies a unique population of RGCs in which structure corresponds remarkably to function.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: JAM-B marks a structurally unique subset of RGCs.
Figure 2: J-RGCs are direction-selective OFF cells.
Figure 3: Asymmetries in J-RGC receptive fields correspond to dendritic asymmetries.
Figure 4: Numbers and central projections of J-RGCs.

References

  1. Masland, R. H. The fundamental plan of the retina. Nature Neurosci. 4, 877–886 (2001)

    Article  CAS  Google Scholar 

  2. Wässle, H. Parallel processing in the mammalian retina. Nature Rev. Neurosci. 5, 747–757 (2004)

    Article  Google Scholar 

  3. Nelson, R. & Kolb, H. in The Visual Neurosciences (eds Chalupa, L. M. & Werner, J. S.) 260–278 (MIT Press, Cambridge, MA, 2003)

    Google Scholar 

  4. Demb, J. B. Cellular mechanisms for direction selectivity in the retina. Neuron 55, 179–186 (2007)

    Article  CAS  Google Scholar 

  5. Taylor, W. R. & Vaney, D. I. New directions in retinal research. Trends Neurosci. 26, 379–385 (2003)

    Article  CAS  Google Scholar 

  6. Yamagata, M., Weiner, J. A. & Sanes, J. R. Sidekicks: synaptic adhesion molecules that promote lamina-specific connectivity in the retina. Cell 110, 649–660 (2002)

    Article  CAS  Google Scholar 

  7. Yamagata, M. & Sanes, J. R. Dscam and Sidekick proteins direct lamina-specific connections in vertebrate retina. Nature 451, 465–469 (2008)

    Article  ADS  CAS  Google Scholar 

  8. Rodieck, R. W. The density recovery profile: a method for the analysis of points in the plane applicable to retinal studies. Vis. Neurosci. 6, 95–111 (1991)

    Article  CAS  Google Scholar 

  9. Weber, C., Fraemohs, L. & Dejana, E. The role of junctional adhesion molecules in vascular inflammation. Nature Rev. Immunol. 7, 467–477 (2007)

    Article  CAS  Google Scholar 

  10. Branda, C. S. & Dymecki, S. M. Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. Dev. Cell 6, 7–28 (2004)

    Article  CAS  Google Scholar 

  11. Buffelli, M. et al. Genetic evidence that relative synaptic efficacy biases the outcome of synaptic competition. Nature 424, 430–434 (2003)

    Article  ADS  CAS  Google Scholar 

  12. Roska, B. & Werblin, F. Vertical interactions across ten parallel, stacked representations in the mammalian retina. Nature 410, 583–587 (2001)

    Article  ADS  CAS  Google Scholar 

  13. Haverkamp, S. & Wässle, H. Immunocytochemical analysis of the mouse retina. J. Comp. Neurol. 14, 1–23 (2000)

    Article  Google Scholar 

  14. Sun, W., Li, N. & He, S. Large-scale morphological survey of mouse retinal ganglion cells. J. Comp. Neurol. 451, 115–126 (2002)

    Article  Google Scholar 

  15. Badea, T. C. & Nathans, J. Quantitative analysis of neuronal morphologies in the mouse retina visualized by using a genetically directed reporter. J. Comp. Neurol. 480, 331–351 (2004)

    Article  Google Scholar 

  16. Coombs, J., van der List, D., Wang, G. Y. & Chalupa, L. M. Morphological properties of mouse retinal ganglion cells. Neuroscience 140, 123–136 (2006)

    Article  CAS  Google Scholar 

  17. Fox, M. A. & Sanes, J. R. Synaptotagmin I and II are present in distinct subsets of central synapses. J. Comp. Neurol. 503, 280–296 (2007)

    Article  CAS  Google Scholar 

  18. Ghosh, K. K., Bujan, S., Haverkamp, S., Feigenspan, A. & Wässle, H. Types of bipolar cells in the mouse retina. J. Comp. Neurol. 469, 70–82 (2004)

    Article  Google Scholar 

  19. Croner, L. J. & Kaplan, E. Receptive fields of P and M ganglion cells across the primate retina. Vision Res. 35, 7–24 (1995)

    Article  CAS  Google Scholar 

  20. Chichilnisky, E. J. A simple white noise analysis of neuronal light responses. Network 12, 199–213 (2001)

    Article  CAS  Google Scholar 

  21. Barlow, H. B. & Levick, W. R. The mechanism of directionally selective units in rabbit’s retina. J. Physiol. (Lond.) 178, 477–504 (1965)

    Article  CAS  Google Scholar 

  22. Ling, C., Schneider, G. E. & Jhaveri, S. Target-specific morphology of retinal axon arbors in the adult hamster. Vis. Neurosci. 15, 559–579 (1998)

    Article  CAS  Google Scholar 

  23. Giolli, R. A., Blanks, R. H. & Lui, F. The accessory optic system: basic organization with an update on connectivity, neurochemistry, and function. Prog. Brain Res. 151, 407–440 (2005)

    Article  Google Scholar 

  24. Dräger, U. C. & Hubel, D. H. Responses to visual stimulation and relationship between visual, auditory, and somatosensory inputs in mouse superior colliculus. J. Neurophysiol. 38, 690–713 (1975)

    Article  Google Scholar 

  25. Braz, J. M., Rico, B. & Basbaum, A. I. Transneuronal tracing of diverse CNS circuits by Cre- mediated induction of wheat germ agglutinin in transgenic mice. Proc. Natl Acad. Sci. USA 99, 15148–15153 (2002)

    Article  ADS  CAS  Google Scholar 

  26. Amthor, F. R., Takahashi, E. S. & Oyster, C. W. Morphologies of rabbit retinal ganglion cells with concentric receptive fields. J. Comp. Neurol. 280, 72–96 (1989)

    Article  CAS  Google Scholar 

  27. Oyster, C. W. & Barlow, H. B. Direction-selective units in rabbit retina: distribution of preferred directions. Science 155, 841–842 (1967)

    Article  ADS  CAS  Google Scholar 

  28. Lin, B., Martin, P. R., Solomon, S. G. & Grunert, U. Distribution of glycine receptor subunits on primate retinal ganglion cells: a quantitative analysis. Eur. J. Neurosci. 12, 4155–4170 (2000)

    CAS  PubMed  Google Scholar 

  29. Barnstable, C. J. & Dräger, U. C. Thy-1 antigen: a ganglion cell specific marker in rodent retina. Neuroscience 11, 847–855 (1984)

    Article  CAS  Google Scholar 

  30. Jeon, C. J., Strettoi, E. & Masland, R. H. The major cell populations of the mouse retina. J. Neurosci. 18, 8936–8946 (1998)

    Article  CAS  Google Scholar 

  31. Biederer, T. et al. SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297, 1525–1531 (2002)

    Article  ADS  CAS  Google Scholar 

  32. Shen, K., Fetter, R. D. & Bargmann, C. I. Synaptic specificity is generated by the synaptic guidepost protein SYG-2 and its receptor, SYG-1. Cell 116, 869–881 (2004)

    Article  CAS  Google Scholar 

  33. Lee, E. C. et al. A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73, 56–65 (2001)

    Article  CAS  Google Scholar 

  34. Farley, F. W., Soriano, P., Steffen, L. S. & Dymecki, S. M. Widespread recombinase expression using FLPeR (flipper) mice. Genesis 28, 106–110 (2000)

    Article  CAS  Google Scholar 

  35. Rice, D. S. & Curran, T. Disabled-1 is expressed in type AII amacrine cells in the mouse retina. J. Comp. Neurol. 424, 327–338 (2000)

    Article  CAS  Google Scholar 

  36. Jakobs, T. C., Ben, Y. & Masland, R. H. CD15 immunoreactive amacrine cells in the mouse retina. J. Comp. Neurol. 465, 361–371 (2003)

    Article  CAS  Google Scholar 

  37. Meister, M., Pine, J. & Baylor, D. A. Multi-neuronal signals from the retina: acquisition and analysis. J. Neurosci. Methods 51, 95–106 (1994)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Dymecki for FlpE mice, A. Basbaum for WGA mice and U. Dräger, S. Haddad, B. Howell, A. Koizumi, T. Kummer, J. Livet, D. Pelusi and E. Soucy for advice and assistance. This work was supported by grants from the National Institutes of Health to M.M. and J.R.S., a Merck Award and a Bushrod H. Campbell and Adah F. Hall Charity Fund Fellowship to I.J.K., and a Damon Runyon fellowship to Y.Z.

Author Contributions I.J.K., Y.Z., M.Y., M.M. and J.R.S. conceived the experiments. I.J.K and M.Y. performed molecular and histological experiments. Y.Z. performed physiological experiments. Y.Z. and M.M. performed computational analysis. M.M. and J.R.S. wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Markus Meister or Joshua R. Sanes.

Supplementary information

Supplementary Figures

The file contains Supplementary Figures 1-7 with Legends. (PDF 9046 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, IJ., Zhang, Y., Yamagata, M. et al. Molecular identification of a retinal cell type that responds to upward motion. Nature 452, 478–482 (2008). https://doi.org/10.1038/nature06739

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06739

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing