Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane

An Erratum to this article was published on 17 April 2008

Abstract

Macroscopic mechanical objects and electromagnetic degrees of freedom can couple to each other through radiation pressure. Optomechanical systems in which this coupling is sufficiently strong are predicted to show quantum effects and are a topic of considerable interest. Devices in this regime would offer new types of control over the quantum state of both light and matter1,2,3,4, and would provide a new arena in which to explore the boundary between quantum and classical physics5,6,7. Experiments so far have achieved sufficient optomechanical coupling to laser-cool mechanical devices8,9,10,11,12, but have not yet reached the quantum regime. The outstanding technical challenge in this field is integrating sensitive micromechanical elements (which must be small, light and flexible) into high-finesse cavities (which are typically rigid and massive) without compromising the mechanical or optical properties of either. A second, and more fundamental, challenge is to read out the mechanical element’s energy eigenstate. Displacement measurements (no matter how sensitive) cannot determine an oscillator’s energy eigenstate13, and measurements coupling to quantities other than displacement14,15,16 have been difficult to realize in practice. Here we present an optomechanical system that has the potential to resolve both of these challenges. We demonstrate a cavity which is detuned by the motion of a 50-nm-thick dielectric membrane placed between two macroscopic, rigid, high-finesse mirrors. This approach segregates optical and mechanical functionality to physically distinct structures and avoids compromising either. It also allows for direct measurement of the square of the membrane’s displacement, and thus in principle the membrane’s energy eigenstate. We estimate that it should be practical to use this scheme to observe quantum jumps of a mechanical system, an important goal in the field of quantum measurement.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematic of the dispersive optomechanical set-up.
Figure 2: Optical and mechanical characterization of the cavity.
Figure 3: Passive laser cooling of the membrane.

References

  1. Fabre, C. et al. Quantum-noise reduction using a cavity with a movable mirror. Phys. Rev. A. 49, 1337–1343 (1994)

    Article  ADS  CAS  Google Scholar 

  2. Giovannetti, V., Mancini, S. & Tombesi, P. Radiation pressure induced Einstein–Podolsky–Rosen paradox. Europhys. Lett. 54, 559–565 (2001)

    Article  ADS  CAS  Google Scholar 

  3. Vitali, D. et al. Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007)

    Article  ADS  CAS  Google Scholar 

  4. Pinard, M. et al. Entangling movable mirrors in a double-cavity system. Europhys. Lett. 72, 747–753 (2005)

    Article  ADS  CAS  Google Scholar 

  5. Bose, S., Jacobs, K. & Knight, P. L. Scheme to probe the decoherence of a macroscopic object. Phys. Rev. A. 59, 3204–3210 (1999)

    Article  ADS  CAS  Google Scholar 

  6. Marshall, W., Simon, C., Penrose, R. & Bouwmeester, D. Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  7. Fereira, A., Geirreiro, A. & Vedral, V. Macroscopic thermal entanglement due to radiation pressure. Phys. Rev. Lett. 96, 060407 (2006)

    Article  ADS  Google Scholar 

  8. Höhberger, C. & Karrai, K. Cavity cooling of a microlever. Nature 432, 1002–1005 (2004)

    Article  ADS  Google Scholar 

  9. Gigan, S. et al. Self cooling of a micromirror by radiation pressure. Nature 444, 67–70 (2006)

    Article  ADS  CAS  Google Scholar 

  10. Arcizet, O., Cohadon, P.-F., Briant, T., Pinard, M. & Heidmann, A. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71–74 (2006)

    Article  ADS  CAS  Google Scholar 

  11. Corbitt, T. et al. An all-optical trap for a gram-scale mirror. Phys. Rev. Lett. 98, 150802 (2007)

    Article  ADS  Google Scholar 

  12. Schliesser, A., Del’Haye, P., Nooshi, N., Vahala, K. J. & Kippenberg, T. J. Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97, 243905 (2006)

    Article  ADS  CAS  Google Scholar 

  13. Braginsky, V. B., Vorontsov, Y. I. & Thorne, K. S. Quantum nondemolition measurements. Science 209, 547–557 (1980)

    Article  ADS  CAS  Google Scholar 

  14. Santamore, D. H., Doherty, A. C. & Cross, M. C. Quantum nondemolition measurements of Fock states of mesoscopic mechanical oscillators. Phys. Rev. B 70, 144301 (2004)

    Article  ADS  Google Scholar 

  15. Martin, I. & Zurek, W. H. Measurement of energy eigenstates by a slow detector. Phys. Rev. Lett. 98, 120401 (2007)

    Article  ADS  CAS  Google Scholar 

  16. Jacobs, K., Lougovski, P. & Blencowe, M. Continuous measurement of the energy eigenstates of a nanomechanical resonator without a nondemolition probe. Phys. Rev. Lett. 98, 147201 (2007)

    Article  ADS  Google Scholar 

  17. Harry, G. M. et al. Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings. Class. Quantum Grav. 19, 897–917 (2002)

    Article  ADS  CAS  Google Scholar 

  18. Hood, C. J., Kimble, H. J. & Ye, J. Characterization of high-finesse mirrors: Loss, phase shifts, and mode structure in an optical cavity. Phys. Rev. A. 64, 033804 (1999)

    Article  ADS  Google Scholar 

  19. Kleckner, D. et al. High finesse opto-mechanical cavity with a movable thirty-micron-size mirror. Phys. Rev. Lett. 96, 173901 (2006)

    Article  ADS  Google Scholar 

  20. Brune, M., Haroche, S., Lefevre, V., Raimond, J. M. & Zagury, N. Quantum nondemolition measurement of small photon numbers by Rydberg-atom phase-sensitive detection. Phys. Rev. Lett. 65, 976–979 (1990)

    Article  ADS  CAS  Google Scholar 

  21. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004)

    Article  ADS  CAS  Google Scholar 

  22. Meystre, P., Wright, E. M., McCullen, J. D. & Vignes, E. Theory of radiation-pressure-driven interferometers. J. Opt. Soc. Am. B 2, 1830–1840 (1985)

    Article  ADS  CAS  Google Scholar 

  23. Poenar, D. P. & Wolffenbuttel, R. F. Optical properties of thin-film silicon-compatible materials. Appl. Opt. 36, 5122–5128 (1997)

    Article  ADS  CAS  Google Scholar 

  24. Müller-Seydlitz, T. et al. Atoms in the lowest motional band of a three-dimensional optical lattice. Phys. Rev. Lett. 78, 1038–1041 (1997)

    Article  ADS  Google Scholar 

  25. Marquardt, F., Chen, J. P., Clerk, A. A. & Girvin, S. M. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007)

    Article  ADS  Google Scholar 

  26. Black, E. D. An introduction to Pound-Drever-Hall laser frequency stabilization. Am. J. Phys. 69, 79–87 (2001)

    Article  ADS  Google Scholar 

  27. Bleszynski, A. C., Shanks, W. E. & Harris, J. G. E. Noise thermometry and electron thermometry of a sample-on-cantilever system below 1 Kelvin. Appl. Phys. Lett. 92, 013123 (2008)

    Article  ADS  Google Scholar 

  28. Kilic, O. et al. Photonic crystal slabs demonstrating strong broadband supression of transmission in the presence of disorders. Opt. Lett. 29, 2782–2784 (2004)

    Article  ADS  Google Scholar 

  29. Stipe, B. C., Rezaei, M. A. & Ho, W. A variable-temperature scanning tunneling microscope capable of single-molecule vibrational spectroscopy. Rev. Sci. Instrum. 70, 137–143 (1999)

    Article  ADS  CAS  Google Scholar 

  30. Wilson-Rae, I., Nooshi, N., Zwerger, W. & Kippenberg, T. J. Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding by the NSF, the DFG NIM network and Emmy Noether programme (F.M.), and a fellowship from the Sloane Research Foundation (J.H.). We thank W. Shanks for the microscopy and cryogenic measurements, and C. Yang for assistance with the laser-cooling measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. E. Harris.

Supplementary information

Supplementary Information

The file contains Supplementary Notes with Supplementary Equations and additional references. (PDF 273 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thompson, J., Zwickl, B., Jayich, A. et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008). https://doi.org/10.1038/nature06715

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06715

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing