Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms

Abstract

Carbonic anhydrase, a zinc enzyme found in organisms from all kingdoms, catalyses the reversible hydration of carbon dioxide and is used for inorganic carbon acquisition by phytoplankton. In the oceans, where zinc is nearly depleted, diatoms use cadmium as a catalytic metal atom in cadmium carbonic anhydrase (CDCA). Here we report the crystal structures of CDCA in four distinct forms: cadmium-bound, zinc-bound, metal-free and acetate-bound. Despite lack of sequence homology, CDCA is a structural mimic of a functional β-carbonic anhydrase dimer, with striking similarity in the spatial organization of the active site residues. CDCA readily exchanges cadmium and zinc at its active site—an apparently unique adaptation to oceanic life that is explained by a stable opening of the metal coordinating site in the absence of metal. Given the central role of diatoms in exporting carbon to the deep sea, their use of cadmium in an enzyme critical for carbon acquisition establishes a remarkable link between the global cycles of cadmium and carbon.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the second CA repeat of CDCA1 (CDCA1-R2).
Figure 2: CDCA1-R2 is a structural mimic of a functional dimer of β-CA.
Figure 3: Structure of CDCA1-R2 bound to substrate analogue acetate.
Figure 4: Facile metal exchange in CDCA1.
Figure 5: Structural basis of efficient metal exchange in CDCA1.
Figure 6: pH dependence of kcat/Km for the Cd-bound (circles) and Zn-bound (squares) CDCA1.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates have been deposited with the Protein Data Bank with the accession numbers 3BOB (R2-Cd), 3BOC (R2-Zn), 3BOE (R2-Cd-Acetate), 3BOH (R1-Cd-acetate) and 3BOJ (R1-metal free).

References

  1. Boyle, E. A., Sclater, F. & Edmond, J. M. Marine geochemistry of cadmium. Nature 263, 42–44 (1976)

    Article  ADS  CAS  Google Scholar 

  2. Bruland, K. W., Knauer, G. A. & Martin, J. H. Cadmium in Northeast Pacific waters. Limnol. Oceanogr. 23, 618–625 (1978)

    Article  ADS  CAS  Google Scholar 

  3. Lane, T. W. & Morel, F. M. M. A biological function for cadmium in marine diatoms. Proc. Natl Acad. Sci. USA 97, 4627–4631 (2000)

    Article  ADS  CAS  Google Scholar 

  4. Morel, F. M. M. et al. Zinc and carbon co-limitation of marine phytoplankton. Nature 369, 740–742 (1994)

    Article  ADS  CAS  Google Scholar 

  5. Price, N. M. & Morel, F. M. M. Cadmium and cobalt substitution for zinc in a marine diatom. Nature 344, 658–660 (1990)

    Article  ADS  CAS  Google Scholar 

  6. Falkowski, P. G. et al. The evolution of modern eukaryotic phytoplankton. Science 305, 354–360 (2004)

    Article  ADS  CAS  Google Scholar 

  7. Fridborg, K. et al. Crystal structure of human erythrocyte carbonic anhydrase C.3. Molecular structure of enzyme and of one enzyme-inhibitor complex at 5.5 Å resolution. J. Mol. Biol. 25, 505–516 (1967)

    Article  CAS  Google Scholar 

  8. Kannan, K. K. et al. Crystal structure of human erythrocyte carbonic anhydrase C.6. 3-dimensional structure at high resolution in relation to other mammalian carbonic anhydrases. Cold Spring Harb. Symp. Quant. Biol. 36, 221–231 (1971)

    Article  CAS  Google Scholar 

  9. Liljas, A. et al. Crystal structure of human carbonic anhydrase C. Nature New Biol. 235, 131–137 (1972)

    Article  CAS  Google Scholar 

  10. Badger, M. The roles of carbonic anhydrases in photosynthetic CO2 concentrating mechanisms. Photosynth. Res. 77, 83–94 (2003)

    Article  CAS  Google Scholar 

  11. Reinfelder, J. R., Kraepiel, A. M. L. & Morel, F. M. M. Unicellular C4 photosynthesis in a marine diatom. Nature 407, 996–999 (2000)

    Article  ADS  CAS  Google Scholar 

  12. Tripp, B. C., Smith, K. & Ferry, J. G. Carbonic anhydrase: New insights for an ancient enzyme. J. Biol. Chem. 276, 48615–48618 (2001)

    Article  CAS  Google Scholar 

  13. Cronk, J. D. et al. Identification of a novel noncatalytic bicarbonate binding site in eubacterial beta-carbonic anhydrase. Biochemistry 45, 4351–4361 (2006)

    Article  CAS  Google Scholar 

  14. Mitsuhashi, S. et al. X-ray structure of beta-carbonic anhydrase from the red alga, Porphyridium purpureum, reveals a novel catalytic site for CO2 hydration. J. Biol. Chem. 275, 5521–5526 (2000)

    Article  CAS  Google Scholar 

  15. Sawaya, M. R. et al. The structure of beta-carbonic anhydrase from the carboxysomal shell reveals a distinct subclass with one active site for the price of two. J. Biol. Chem. 281, 7546–7555 (2006)

    Article  CAS  Google Scholar 

  16. Strop, P., Smith, K. S., Iverson, T. M., Ferry, J. G. & Rees, D. C. Crystal structure of the “cab”-type beta class carbonic anhydrase from the archaeon Methanobacterium thermoautotrophicum. J. Biol. Chem. 276, 10299–10305 (2001)

    Article  CAS  Google Scholar 

  17. Roberts, S. B., Lane, T. W. & Morel, F. M. M. Carbonic anhydrase in the marine diatom Thalassiosira weissflogii (Bacillariophyceae). J. Phycol. 33, 845–850 (1997)

    Article  CAS  Google Scholar 

  18. Sotoj, A. R. et al. Identification and preliminary characterization of two cDNAs encoding unique carbonic anhydrases from the marine alga Emiliania huxleyi. Appl. Environ. Microbiol. 72, 5500–5511 (2006)

    Article  Google Scholar 

  19. Cox, E. H. et al. The active site structure of Thalassiosira weissflogii carbonic anhydrase 1. Biochemistry 39, 12128–12130 (2000)

    Article  CAS  Google Scholar 

  20. Lane, T. W. et al. A cadmium enzyme from a marine diatom. Nature 435, 42 (2005)

    Article  ADS  CAS  Google Scholar 

  21. Park, H., Song, B. & Morel, F. M. M. Diversity of the cadmium-containing carbonic anhydrase in marine diatoms and natural waters. Environ. Microbiol. 9, 403–413 (2007)

    Article  CAS  Google Scholar 

  22. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993)

    Article  CAS  Google Scholar 

  23. Kimber, M. S. & Pai, E. F. The active site architecture of Pisum sativum beta-carbonic anhydrase is a mirror image of that of alpha-carbonic anhydrases. EMBO J. 19, 1407–1418 (2000)

    Article  CAS  Google Scholar 

  24. Satoh, D., Hiraoka, Y., Colman, B. & Matsuda, Y. Physiological and molecular biological characterization of intracellular carbonic anhydrase from the marine diatom Phaeodactylum tricornutum. Plant Physiol. 126, 1459–1470 (2001)

    Article  CAS  Google Scholar 

  25. Coleman, J. E. Human carbonic anhydrase. Protein conformation and metal ion binding. Biochemistry 4, 2644–2655 (1965)

    Article  CAS  Google Scholar 

  26. Ejnik, J., Munoz, A., Gan, T., Shaw, C. F. & Petering, D. H. Interprotein metal ion exchange between cadmium-carbonic anhydrase and apo- or zinc-metallothionein. J. Biol. Inorg. Chem. 4, 784–790 (1999)

    Article  CAS  Google Scholar 

  27. Pocker, Y. & Fong, C. T. O. Kinetics of inactivation of erythrocyte carbonic anhydrase by sodium 2,6-pyridinedicarboxylate. Biochemistry 19, 2045–2050 (1980)

    Article  CAS  Google Scholar 

  28. Ahner, B. A., Price, N. M. & Morel, F. M. M. Phytochelatin production by marine phytoplankton at low free metal ion concentrations — Laboratory studies and field data from Massachusetts Bay. Proc. Natl Acad. Sci. USA 91, 8433–8436 (1994)

    Article  ADS  CAS  Google Scholar 

  29. Hakansson, K., Carlsson, M., Svensson, L. A. & Liljas, A. Structure of native and apo carbonic anhydrase II and structure of some of its anion ligand complexes. J. Mol. Biol. 227, 1192–1204 (1992)

    Article  CAS  Google Scholar 

  30. Okoniewska, M., Tanaka, T. & Yada, R. Y. The pepsin residue glycine76 contributes to active-site loop flexibility and participates in catalysis. Biochem. J. 349, 169–177 (2000)

    Article  CAS  Google Scholar 

  31. Silverman, D. N. Carbonic anhydrase - O18 exchange catalyzed by an enzyme with rate contributing proton transfer steps. Methods Enzymol. 87, 732–752 (1982)

    Article  CAS  Google Scholar 

  32. Christianson, D. W. & Cox, J. D. Catalysis by metal-activated hydroxide in zinc and manganese metalloenzymes. Annu. Rev. Biochem. 68, 33–57 (1999)

    Article  CAS  Google Scholar 

  33. Alber, B. E. et al. Kinetic and spectroscopic characterization of the gamma-carbonic anhydrase from the methanoarchaeon Methanosarcina thermophila. Biochemistry 38, 13119–13128 (1999)

    Article  CAS  Google Scholar 

  34. Fisher, S. Z. et al. Speeding up proton transfer in a fast enzyme: Kinetic and crystallographic studies on the effect of hydrophobic amino acid substitutions in the active site of human carbonic anhydrase II. Biochemistry 46, 3803–3813 (2007)

    Article  CAS  Google Scholar 

  35. Coleman, J. E. Metal ion dependent binding of sulphonamide to carbonic anhydrase. Nature 214, 193–194 (1967)

    Article  ADS  CAS  Google Scholar 

  36. Tibell, L. & Lindskog, S. Catalytic properties and inhibition of Cd2+-carbonic anhydrases. Biochim. Biophys. Acta 788, 110–116 (1984)

    Article  CAS  Google Scholar 

  37. Burkhardt, S., Amoroso, G., Riebesell, U. & Sultemeyer, D. CO2 and HCO3- uptake in marine diatoms acclimated to different CO2 concentrations. Limnol. Oceanogr. 46, 1378–1391 (2001)

    Article  ADS  CAS  Google Scholar 

  38. Kuss, J. & Kremling, K. Spatial variability of particle associated trace elements in near-surface waters of the North Atlantic (30 degrees N/60 degrees W to 60 degrees N/2 degrees W), derived by large volume sampling. Mar. Chem. 68, 71–86 (1999)

    Article  CAS  Google Scholar 

  39. Liu, J. B., Stemmler, A. J., Fatima, J. & Mitra, B. Metal-binding characteristics of the amino-terminal domain of ZntA: Binding of lead is different compared to cadmium and zinc. Biochemistry 44, 5159–5167 (2005)

    Article  CAS  Google Scholar 

  40. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  41. Sheldrick, G. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008)

    Article  ADS  CAS  Google Scholar 

  42. Perrakis, A., Morris, R. & Lamzin, V. S. Automated protein model building combined with iterative structure refinement. Nature Struct. Biol. 6, 458–463 (1999)

    Article  CAS  Google Scholar 

  43. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  CAS  Google Scholar 

  44. Kraulis, P. J. Molscript: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991)

    Article  Google Scholar 

  45. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991)

    Article  CAS  Google Scholar 

  46. McCoy, A. J., Grosse-Kunstleve, R. W., Storoni, L. C. & Read, R. J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D 61, 458–464 (2005)

    Article  Google Scholar 

  47. Gans, P., Sabatini, A. & Vacca, A. Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 43, 1739–1753 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Saxena at the NSLS for assistance and Patrick McGinn for help with CA assays. This work was supported by start-up funds from Princeton University (to Y.S.), the NSF and the NSF-funded Center for Environmental Bioinorganic Chemistry (to F.M.M.M.).

Author Contributions Y.X. performed all the biochemical experiments; L.F. crystallized all forms of CDCA1; P.D.J. solved the structures; and F.M.M.M. and Y.S. supervised the work and wrote the paper. All authors discussed the results and commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yigong Shi or François M. M. Morel.

Supplementary information

Supplementary Information

The file contains Supplementary Tables 1-2 with the X-ray data statistics and Supplementary Figures 1-5 with Legends. (PDF 3573 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Feng, L., Jeffrey, P. et al. Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452, 56–61 (2008). https://doi.org/10.1038/nature06636

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06636

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing