Localization and functionality of microsporidian iron–sulphur cluster assembly proteins


Microsporidia are highly specialized obligate intracellular parasites of other eukaryotes (including humans1) that show extreme reduction at the molecular, cellular and biochemical level2,3. Although microsporidia have long been considered as early branching eukaryotes that lack mitochondria4, they have recently been shown to contain a tiny mitochondrial remnant called a mitosome2,5. The function of the mitosome is unknown, because microsporidians lack the genes for canonical mitochondrial functions, such as aerobic respiration and haem biosynthesis. However, microsporidial genomes encode several components of the mitochondrial iron–sulphur (Fe–S) cluster assembly machinery. Here we provide experimental insights into the metabolic function and localization of these proteins. We cloned, functionally characterized and localized homologues of several central mitochondrial Fe–S cluster assembly components for the microsporidians Encephalitozoon cuniculi and Trachipleistophora hominis. Several microsporidial proteins can functionally replace their yeast counterparts in Fe–S protein biogenesis. In E. cuniculi, the iron (frataxin) and sulphur (cysteine desulphurase, Nfs1) donors and the scaffold protein (Isu1) co-localize with mitochondrial Hsp70 to the mitosome, consistent with it being the functional site for Fe–S cluster biosynthesis. In T. hominis, mitochondrial Hsp70 and the essential sulphur donor (Nfs1) are still in the mitosome, but surprisingly the main pools of Isu1 and frataxin are cytosolic, creating a conundrum of how these key components of Fe–S cluster biosynthesis coordinate their function. Together, our studies identify the essential biosynthetic process of Fe–S protein assembly as a key function of microsporidian mitosomes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Trachipleistophora hominis Fe–S cluster proteins are functional in Fe–S cluster biosynthesis reactions.
Figure 2: Mitochondrial-targeted EcYfh1 and EcGrx5 (partially) restore Fe–S protein maturation in Yfh1- and Grx5-depleted yeast cells.
Figure 3: Cellular localization of Isu1-, Yfh1- and Nfs1-like proteins in E. cuniculi by immunofluorescence and confocal microscopy.
Figure 4: Cellular localization of Isu1-, Yfh1- and Nfs1-like proteins in T. hominis.

Accession codes

Primary accessions


Data deposits

The new T. hominis sequences have been deposited in GenBank under accession numbers EF571313EF571315 and EU282037.


  1. 1

    Keeling, P. J. & Fast, N. M. Microsporidia: biology and evolution of highly reduced intracellular parasites. Annu. Rev. Microbiol. 56, 93–116 (2002)

    CAS  Article  Google Scholar 

  2. 2

    Katinka, M. D. et al. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi . Nature 414, 450–453 (2001)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Burri, L., Williams, B. A., Bursac, D., Lithgow, T. & Keeling, P. J. Microsporidian mitosomes retain elements of the general mitochondrial targeting system. Proc. Natl Acad. Sci. USA 103, 15916–15920 (2006)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Embley, T. M. & Martin, W. Eukaryotic evolution, changes and challenges. Nature 440, 623–630 (2006)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Williams, B. A., Hirt, R. P., Lucocq, J. M. & Embley, T. M. A mitochondrial remnant in the microsporidian Trachipleistophora hominis . Nature 418, 865–869 (2002)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Lill, R. & Kispal, G. Maturation of cellular Fe-S proteins: an essential function of mitochondria. Trends Biochem. Sci. 25, 352–356 (2000)

    CAS  Article  Google Scholar 

  7. 7

    Kispal, G. et al. Biogenesis of cytosolic ribosomes requires the essential iron-sulphur protein Rli1p and mitochondria. EMBO J. 24, 589–598 (2005)

    CAS  Article  Google Scholar 

  8. 8

    Wiedemann, N. et al. Essential role of Isd11 in mitochondrial iron-sulfur cluster synthesis on Isu scaffold proteins. EMBO J. 25, 184–195 (2006)

    CAS  Article  Google Scholar 

  9. 9

    Lill, R. & Muhlenhoff, U. Iron-sulfur protein biogenesis in eukaryotes: components and mechanisms. Annu. Rev. Cell Dev. Biol. 22, 457–486 (2006)

    CAS  Article  Google Scholar 

  10. 10

    Emelyanov, V. V. Phylogenetic affinity of a Giardia lamblia cysteine desulfurase conforms to canonical pattern of mitochondrial ancestry. FEMS Microbiol. Lett. 226, 257–266 (2003)

    CAS  Article  Google Scholar 

  11. 11

    Tovar, J. et al. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426, 172–176 (2003)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Molik, S., Lill, R. & Muhlenhoff, U. Methods for studying iron metabolism in yeast mitochondria. Methods Cell Biol. 80, 261–280 (2007)

    CAS  Article  Google Scholar 

  13. 13

    Guda, C., Fahy, E. & Subramaniam, S. MITOPRED: a genome-scale method for prediction of nucleus-encoded mitochondrial proteins. Bioinformatics 20, 1785–1794 (2004)

    CAS  Article  Google Scholar 

  14. 14

    Gerber, J., Neumann, K., Prohl, C., Muhlenhoff, U. & Lill, R. The yeast scaffold proteins Isu1p and Isu2p are required inside mitochondria for maturation of cytosolic Fe–S proteins. Mol. Cell. Biol. 24, 4848–4857 (2004)

    CAS  Article  Google Scholar 

  15. 15

    Muhlenhoff, U., Gerber, J., Richhardt, N. & Lill, R. Components involved in assembly and dislocation of iron-sulfur clusters on the scaffold protein Isu1p. EMBO J. 22, 4815–4825 (2003)

    Article  Google Scholar 

  16. 16

    Dutkiewicz, R. et al. The Hsp70 chaperone Ssq1p is dispensable for iron-sulfur cluster formation on the scaffold protein Isu1p. J. Biol. Chem. 281, 7801–7808 (2006)

    CAS  Article  Google Scholar 

  17. 17

    Netz, D. J., Pierik, A. J., Stumpfig, M., Muhlenhoff, U. & Lill, R. The Cfd1-Nbp35 complex acts as a scaffold for iron-sulfur protein assembly in the yeast cytosol. Nature Chem. Biol. 3, 278–286 (2007)

    CAS  Article  Google Scholar 

  18. 18

    Abrahamsen, M. S. et al. Complete genome sequence of the apicomplexan, Cryptosporidium parvum . Science 304, 441–445 (2004)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Loftus, B. et al. The genome of the protist parasite Entamoeba histolytica . Nature 433, 865–868 (2005)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Carlton, J. M. et al. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis . Science 315, 207–212 (2007)

    ADS  Article  Google Scholar 

  21. 21

    Ali, V., Shigeta, Y., Tokumoto, U., Takahashi, Y. & Nozaki, T. An intestinal parasitic protist, Entamoeba histolytica, possesses a non-redundant nitrogen fixation-like system for iron-sulfur cluster assembly under anaerobic conditions. J. Biol. Chem. 279, 16863–16874 (2004)

    CAS  Article  Google Scholar 

  22. 22

    Johnson, D. C., Dean, D. R., Smith, A. D. & Johnson, M. K. Structure, function, and formation of biological iron-sulfur clusters. Annu. Rev. Biochem. 74, 247–281 (2005)

    CAS  Article  Google Scholar 

  23. 23

    Rouault, T. A. & Tong, W. H. Iron-sulphur cluster biogenesis and mitochondrial iron homeostasis. Nature Rev. Mol. Cell Biol. 6, 345–351 (2005)

    CAS  Article  Google Scholar 

  24. 24

    Balk, J. & Lobreaux, S. Biogenesis of iron-sulfur proteins in plants. Trends Plant Sci. 10, 324–331 (2005)

    CAS  Article  Google Scholar 

  25. 25

    Sutak, R. et al. Mitochondrial-type assembly of FeS centers in the hydrogenosomes of the amitochondriate eukaryote Trichomonas vaginalis . Proc. Natl Acad. Sci. USA 101, 10368–10373 (2004)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Vavra, J. “Polar vesicles” of microsporidia are mitochondrial remnants (“mitosomes”)? Folia Parasitol. (Praha) 52, 193–195 (2005)

    Article  Google Scholar 

  27. 27

    Muhlenhoff, U. et al. Functional characterization of the eukaryotic cysteine desulfurase Nfs1p from Saccharomyces cerevisiae . J. Biol. Chem. 279, 36906–36915 (2004)

    Article  Google Scholar 

  28. 28

    Muhlenhoff, U., Richhardt, N., Ristow, M., Kispal, G. & Lill, R. The yeast frataxin homolog Yfh1p plays a specific role in the maturation of cellular Fe–S proteins. Hum. Mol. Genet. 11, 2025–2036 (2002)

    Article  Google Scholar 

  29. 29

    Mumberg, D., Muller, R. & Funk, M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156, 119–122 (1995)

    CAS  Article  Google Scholar 

  30. 30

    Taupin, V., Metenier, G., Vivares, C. P. & Prensier, G. An improved procedure for percoll gradient separation of sporogonial stages in Encephalitozoon cuniculi (Microsporidia). Parasitol. Res. 99, 708–714 (2006)

    Article  Google Scholar 

Download references


A.V.G. acknowledges the support of a Marie Curie Fellowship from the European Commission and T.M.E. acknowledges support from the British Royal Society and the Leverhulme Trust. We thank A. J. Pierik and C. Noel for help in identifying ThIsd11;, J. Ihrig and B. Keys for experimental support; and T. Booth for help with confocal microscopy. R.L. acknowledges support from Deutsche Forschungsgemeinschaft (Gottfried-Wilhelm Leibniz program and SFB-TR1), European Commission (MitEURO), and Fonds der Chemischen Industrie.

Author information



Corresponding authors

Correspondence to Roland Lill or T. Martin Embley.

Supplementary information

Supplementary Information

The file contains Supplementary Figures S1-S9 with Legends and additional references. (PDF 3894 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goldberg, A., Molik, S., Tsaousis, A. et al. Localization and functionality of microsporidian iron–sulphur cluster assembly proteins. Nature 452, 624–628 (2008). https://doi.org/10.1038/nature06606

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.