Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

DNA-guided crystallization of colloidal nanoparticles


Many nanometre-sized building blocks will readily assemble into macroscopic structures. If the process is accompanied by effective control over the interactions between the blocks and all entropic effects1,2, then the resultant structures will be ordered with a precision hard to achieve with other fabrication methods. But it remains challenging to use self-assembly to design systems comprised of different types of building blocks—to realize novel magnetic, plasmonic and photonic metamaterials3,4,5, for example. A conceptually simple idea for overcoming this problem is the use of ‘encodable’ interactions between building blocks; this can in principle be straightforwardly implemented using biomolecules6,7,8,9,10. Strategies that use DNA programmability to control the placement of nanoparticles in one and two dimensions have indeed been demonstrated11,12,13. However, our theoretical understanding of how to extend this approach to three dimensions is limited14,15, and most experiments have yielded amorphous aggregates16,17,18,19 and only occasionally crystallites of close-packed micrometre-sized particles9,10. Here, we report the formation of three-dimensional crystalline assemblies of gold nanoparticles mediated by interactions between complementary DNA molecules attached to the nanoparticles’ surface. We find that the nanoparticle crystals form reversibly during heating and cooling cycles. Moreover, the body-centred-cubic lattice structure is temperature-tuneable and structurally open, with particles occupying only 4% of the unit cell volume. We expect that our DNA-mediated crystallization approach, and the insight into DNA design requirements it has provided, will facilitate both the creation of new classes of ordered multicomponent metamaterials and the exploration of the phase behaviour of hybrid systems with addressable interactions.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of experimental design.
Figure 2: Crystallization pathway for system IV.
Figure 3: Structure of crystalline DNA–nanoparticle systems.


  1. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006)

    Article  ADS  CAS  Google Scholar 

  2. Zhang, H., Edwards, E. W., Wang, D. Y. & Mohwald, H. Directing the self-assembly of nanocrystals beyond colloidal crystallization. Phys. Chem. Chem. Phys. 8, 3288–3299 (2006)

    Article  CAS  Google Scholar 

  3. Lee, J., Hernandez, P., Lee, J., Govorov, A. O. & Kotov, N. A. Exciton–plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection. Nature Mater. 6, 291–295 (2007)

    Article  ADS  CAS  Google Scholar 

  4. Redl, F. X., Cho, K. S., Murray, C. B. & O’Brien, S. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature 423, 968–971 (2003)

    Article  ADS  CAS  Google Scholar 

  5. Urban, J. J., Talapin, D. V., Shevchenko, E. V., Kagan, C. R. & Murray, C. B. Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag-2 Te thin films. Nature Mater. 6, 115–121 (2007)

    Article  ADS  CAS  Google Scholar 

  6. Katz, E. & Willner, I. Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Angew. Chem. Int. Edn Engl. 43, 6042–6108 (2004)

    Article  CAS  Google Scholar 

  7. Alivisatos, A. P. et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996)

    Article  ADS  CAS  Google Scholar 

  8. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996)

    Article  ADS  CAS  Google Scholar 

  9. Kim, A. J., Biancaniello, P. L. & Crocker, J. C. Engineering DNA-mediated colloidal crystallization. Langmuir 22, 1991–2001 (2006)

    Article  CAS  Google Scholar 

  10. Biancaniello, P. L., Kim, A. J. & Crocker, J. C. Colloidal interactions and self-assembly using DNA hybridization. Phys. Rev. Lett. 94, 058302 (2005)

    Article  ADS  Google Scholar 

  11. Pinto, Y. Y. et al. Sequence-encoded self-assembly of multiple-nanocomponent arrays by 2D DNA scaffolding. Nano Lett. 5, 2399–2402 (2005)

    Article  ADS  CAS  Google Scholar 

  12. Tang, Z. Y. & Kotov, N. A. One-dimensional assemblies of nanoparticles: preparation, properties, and promise. Adv. Mater. 17, 951–962 (2005)

    Article  CAS  Google Scholar 

  13. Zhang, J. P., Liu, Y., Ke, Y. G. & Yan, H. Periodic square-like gold nanoparticle arrays templated by self-assembled 2D DNA nanogrids on a surface. Nano Lett. 6, 248–251 (2006)

    Article  ADS  CAS  Google Scholar 

  14. Lukatsky, D. B., Mulder, B. M. & Frenkel, D. Designing ordered DNA-linked nanoparticle assemblies. J. Phys. Cond. Matt. 18, S567–S580 (2006)

    Article  ADS  CAS  Google Scholar 

  15. Tkachenko, A. V. Morphological diversity of DNA-colloidal self-assembly. Phys. Rev. Lett. 89, 148303 (2002)

    Article  ADS  Google Scholar 

  16. Maye, M. M., Nykypanchuk, D., van der Lelie, D. & Gang, O. A simple method for kinetic control of DNA-induced nanoparticle assembly. J. Am. Chem. Soc. 128, 14020–14021 (2006)

    Article  CAS  Google Scholar 

  17. Maye, M. M., Nykypanchuk, D., van der Lelie, D. & Gang, O. DNA-Regulated micro- and nanoparticle assembly. Small 3, 1678–1682 (2007)

    Article  CAS  Google Scholar 

  18. Park, S. J., Lazarides, A. A., Mirkin, C. A. & Letsinger, R. L. Directed assembly of periodic materials from protein and oligonucleotide-modified nanoparticle building blocks. Angew. Chem. Int. Edn Engl. 40, 2909–2912 (2001)

    Article  CAS  Google Scholar 

  19. Park, S. J., Lazarides, A. A., Storhoff, J. J., Pesce, L. & Mirkin, C. A. The structural characterization of oligonucleotide-modified gold nanoparticle networks formed by DNA hybridization. J. Phys. Chem. B 108, 12375–12380 (2004)

    Article  CAS  Google Scholar 

  20. Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-based approach for interparticle interaction control. Langmuir 23, 6305–6314 (2007)

    Article  CAS  Google Scholar 

  21. Valignat, M. P., Theodoly, O., Crocker, J. C., Russel, W. B. & Chaikin, P. M. Reversible self-assembly and directed assembly of DNA-linked micrometer-sized colloids. Proc. Natl Acad. Sci. USA 102, 4225–4229 (2005)

    Article  ADS  CAS  Google Scholar 

  22. Biancaniello, P. L., Kim, A. J. & Crocker, J. C. Colloidal interactions and self-assembly using DNA hybridization. Phys. Rev. Lett. 94, 058302 (2005)

    Article  ADS  Google Scholar 

  23. Rogers, P. H. et al. Selective, controllable, and reversible aggregation of polystyrene latex microspheres via DNA hybridization. Langmuir 21, 5562–5569 (2005)

    Article  CAS  Google Scholar 

  24. Israelachvili, J. N. Intermolecular and Surface Forces 2nd edn (Academic Press, London, 1992)

    Google Scholar 

  25. Milner, S. T. Compressing polymer brushes—a quantitative comparison of theory and experiment. Europhys. Lett. 7, 695–699 (1988)

    Article  ADS  CAS  Google Scholar 

  26. Warren, B. E. X-ray Diffraction Ch. 13 (Addison-Wesley, Reading, Massachusetts, 1969)

    Google Scholar 

  27. Dan, N. & Tirrell, M. Polymers tethered to curved interfaces—a self-consistent-field analysis. Macromolecules 25, 2890–2895 (1992)

    Article  ADS  CAS  Google Scholar 

  28. Rubinstein, M. & Colby, R. H. Polymer Physics Ch. 3 (Oxford Univ. Press, New York, 2003)

    Google Scholar 

  29. Lytton-Jean, A. K. R. & Mirkin, C. A. A thermodynamic investigation into the binding properties of DNA functionalized gold nanoparticle probes and molecular fluorophore probes. J. Am. Chem. Soc. 127, 12754–12755 (2005)

    Article  CAS  Google Scholar 

  30. Hurst, S. J., Lytton-Jean, A. K. R. & Mirkin, C. A. Maximizing DNA loading on a range of gold nanoparticle sizes. Anal. Chem. 78, 8313–8318 (2006)

    Article  CAS  Google Scholar 

Download references


We acknowledge the support of the Division Materials Science and Engineering in the Office of Basic Energy Sciences within the US DOE Office of Science. We thank the Center for Functional Nanomaterials and National Synchrotron Light Source at Brookhaven National Laboratory for the use of their facilities.

Author Contributions D.N., M.M.M., D.v.d.L. and O.G. contributed to the design of the experiment. M.M.M. synthesized and functionalized nanoparticles. D.N., M.M.M. and O.G. collected data and prepared the manuscript. D.N. processed X-ray data. O.G. directed the research.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Oleg Gang.

Supplementary information

Supplementary Information

The file contains Supplementary Discussion on the thermal behavior un-crystallized DNA – nanoparticle systems. It includes Supplementary Figures S1 and S2; Supplementary Tables S1-S3 and additional references pertaining to the Supplementary Discussion. (PDF 717 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nykypanchuk, D., Maye, M., van der Lelie, D. et al. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing