DNA-guided crystallization of colloidal nanoparticles


Many nanometre-sized building blocks will readily assemble into macroscopic structures. If the process is accompanied by effective control over the interactions between the blocks and all entropic effects1,2, then the resultant structures will be ordered with a precision hard to achieve with other fabrication methods. But it remains challenging to use self-assembly to design systems comprised of different types of building blocks—to realize novel magnetic, plasmonic and photonic metamaterials3,4,5, for example. A conceptually simple idea for overcoming this problem is the use of ‘encodable’ interactions between building blocks; this can in principle be straightforwardly implemented using biomolecules6,7,8,9,10. Strategies that use DNA programmability to control the placement of nanoparticles in one and two dimensions have indeed been demonstrated11,12,13. However, our theoretical understanding of how to extend this approach to three dimensions is limited14,15, and most experiments have yielded amorphous aggregates16,17,18,19 and only occasionally crystallites of close-packed micrometre-sized particles9,10. Here, we report the formation of three-dimensional crystalline assemblies of gold nanoparticles mediated by interactions between complementary DNA molecules attached to the nanoparticles’ surface. We find that the nanoparticle crystals form reversibly during heating and cooling cycles. Moreover, the body-centred-cubic lattice structure is temperature-tuneable and structurally open, with particles occupying only 4% of the unit cell volume. We expect that our DNA-mediated crystallization approach, and the insight into DNA design requirements it has provided, will facilitate both the creation of new classes of ordered multicomponent metamaterials and the exploration of the phase behaviour of hybrid systems with addressable interactions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic of experimental design.
Figure 2: Crystallization pathway for system IV.
Figure 3: Structure of crystalline DNA–nanoparticle systems.


  1. 1

    Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Zhang, H., Edwards, E. W., Wang, D. Y. & Mohwald, H. Directing the self-assembly of nanocrystals beyond colloidal crystallization. Phys. Chem. Chem. Phys. 8, 3288–3299 (2006)

    CAS  Article  Google Scholar 

  3. 3

    Lee, J., Hernandez, P., Lee, J., Govorov, A. O. & Kotov, N. A. Exciton–plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection. Nature Mater. 6, 291–295 (2007)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Redl, F. X., Cho, K. S., Murray, C. B. & O’Brien, S. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature 423, 968–971 (2003)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Urban, J. J., Talapin, D. V., Shevchenko, E. V., Kagan, C. R. & Murray, C. B. Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag-2 Te thin films. Nature Mater. 6, 115–121 (2007)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Katz, E. & Willner, I. Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Angew. Chem. Int. Edn Engl. 43, 6042–6108 (2004)

    CAS  Article  Google Scholar 

  7. 7

    Alivisatos, A. P. et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Kim, A. J., Biancaniello, P. L. & Crocker, J. C. Engineering DNA-mediated colloidal crystallization. Langmuir 22, 1991–2001 (2006)

    CAS  Article  Google Scholar 

  10. 10

    Biancaniello, P. L., Kim, A. J. & Crocker, J. C. Colloidal interactions and self-assembly using DNA hybridization. Phys. Rev. Lett. 94, 058302 (2005)

    ADS  Article  Google Scholar 

  11. 11

    Pinto, Y. Y. et al. Sequence-encoded self-assembly of multiple-nanocomponent arrays by 2D DNA scaffolding. Nano Lett. 5, 2399–2402 (2005)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Tang, Z. Y. & Kotov, N. A. One-dimensional assemblies of nanoparticles: preparation, properties, and promise. Adv. Mater. 17, 951–962 (2005)

    CAS  Article  Google Scholar 

  13. 13

    Zhang, J. P., Liu, Y., Ke, Y. G. & Yan, H. Periodic square-like gold nanoparticle arrays templated by self-assembled 2D DNA nanogrids on a surface. Nano Lett. 6, 248–251 (2006)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Lukatsky, D. B., Mulder, B. M. & Frenkel, D. Designing ordered DNA-linked nanoparticle assemblies. J. Phys. Cond. Matt. 18, S567–S580 (2006)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Tkachenko, A. V. Morphological diversity of DNA-colloidal self-assembly. Phys. Rev. Lett. 89, 148303 (2002)

    ADS  Article  Google Scholar 

  16. 16

    Maye, M. M., Nykypanchuk, D., van der Lelie, D. & Gang, O. A simple method for kinetic control of DNA-induced nanoparticle assembly. J. Am. Chem. Soc. 128, 14020–14021 (2006)

    CAS  Article  Google Scholar 

  17. 17

    Maye, M. M., Nykypanchuk, D., van der Lelie, D. & Gang, O. DNA-Regulated micro- and nanoparticle assembly. Small 3, 1678–1682 (2007)

    CAS  Article  Google Scholar 

  18. 18

    Park, S. J., Lazarides, A. A., Mirkin, C. A. & Letsinger, R. L. Directed assembly of periodic materials from protein and oligonucleotide-modified nanoparticle building blocks. Angew. Chem. Int. Edn Engl. 40, 2909–2912 (2001)

    CAS  Article  Google Scholar 

  19. 19

    Park, S. J., Lazarides, A. A., Storhoff, J. J., Pesce, L. & Mirkin, C. A. The structural characterization of oligonucleotide-modified gold nanoparticle networks formed by DNA hybridization. J. Phys. Chem. B 108, 12375–12380 (2004)

    CAS  Article  Google Scholar 

  20. 20

    Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-based approach for interparticle interaction control. Langmuir 23, 6305–6314 (2007)

    CAS  Article  Google Scholar 

  21. 21

    Valignat, M. P., Theodoly, O., Crocker, J. C., Russel, W. B. & Chaikin, P. M. Reversible self-assembly and directed assembly of DNA-linked micrometer-sized colloids. Proc. Natl Acad. Sci. USA 102, 4225–4229 (2005)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Biancaniello, P. L., Kim, A. J. & Crocker, J. C. Colloidal interactions and self-assembly using DNA hybridization. Phys. Rev. Lett. 94, 058302 (2005)

    ADS  Article  Google Scholar 

  23. 23

    Rogers, P. H. et al. Selective, controllable, and reversible aggregation of polystyrene latex microspheres via DNA hybridization. Langmuir 21, 5562–5569 (2005)

    CAS  Article  Google Scholar 

  24. 24

    Israelachvili, J. N. Intermolecular and Surface Forces 2nd edn (Academic Press, London, 1992)

    Google Scholar 

  25. 25

    Milner, S. T. Compressing polymer brushes—a quantitative comparison of theory and experiment. Europhys. Lett. 7, 695–699 (1988)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Warren, B. E. X-ray Diffraction Ch. 13 (Addison-Wesley, Reading, Massachusetts, 1969)

    Google Scholar 

  27. 27

    Dan, N. & Tirrell, M. Polymers tethered to curved interfaces—a self-consistent-field analysis. Macromolecules 25, 2890–2895 (1992)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Rubinstein, M. & Colby, R. H. Polymer Physics Ch. 3 (Oxford Univ. Press, New York, 2003)

    Google Scholar 

  29. 29

    Lytton-Jean, A. K. R. & Mirkin, C. A. A thermodynamic investigation into the binding properties of DNA functionalized gold nanoparticle probes and molecular fluorophore probes. J. Am. Chem. Soc. 127, 12754–12755 (2005)

    CAS  Article  Google Scholar 

  30. 30

    Hurst, S. J., Lytton-Jean, A. K. R. & Mirkin, C. A. Maximizing DNA loading on a range of gold nanoparticle sizes. Anal. Chem. 78, 8313–8318 (2006)

    CAS  Article  Google Scholar 

Download references


We acknowledge the support of the Division Materials Science and Engineering in the Office of Basic Energy Sciences within the US DOE Office of Science. We thank the Center for Functional Nanomaterials and National Synchrotron Light Source at Brookhaven National Laboratory for the use of their facilities.

Author Contributions D.N., M.M.M., D.v.d.L. and O.G. contributed to the design of the experiment. M.M.M. synthesized and functionalized nanoparticles. D.N., M.M.M. and O.G. collected data and prepared the manuscript. D.N. processed X-ray data. O.G. directed the research.

Author information



Corresponding author

Correspondence to Oleg Gang.

Supplementary information

Supplementary Information

The file contains Supplementary Discussion on the thermal behavior un-crystallized DNA – nanoparticle systems. It includes Supplementary Figures S1 and S2; Supplementary Tables S1-S3 and additional references pertaining to the Supplementary Discussion. (PDF 717 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nykypanchuk, D., Maye, M., van der Lelie, D. et al. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008). https://doi.org/10.1038/nature06560

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing