Abstract

Observations of distant supernovae indicate that the Universe is now in a phase of accelerated expansion1,2 the physical cause of which is a mystery3. Formally, this requires the inclusion of a term acting as a negative pressure in the equations of cosmic expansion, accounting for about 75 per cent of the total energy density in the Universe. The simplest option for this ‘dark energy’ corresponds to a ‘cosmological constant’, perhaps related to the quantum vacuum energy. Physically viable alternatives invoke either the presence of a scalar field with an evolving equation of state, or extensions of general relativity involving higher-order curvature terms or extra dimensions4,5,6,7,8. Although they produce similar expansion rates, different models predict measurable differences in the growth rate of large-scale structure with cosmic time9. A fingerprint of this growth is provided by coherent galaxy motions, which introduce a radial anisotropy in the clustering pattern reconstructed by galaxy redshift surveys10. Here we report a measurement of this effect at a redshift of 0.8. Using a new survey of more than 10,000 faint galaxies11,12, we measure the anisotropy parameter β = 0.70 ± 0.26, which corresponds to a growth rate of structure at that time of f = 0.91 ± 0.36. This is consistent with the standard cosmological-constant model with low matter density and flat geometry, although the error bars are still too large to distinguish among alternative origins for the accelerated expansion. The correct origin could be determined with a further factor-of-ten increase in the sampled volume at similar redshift.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998)

  2. 2.

    et al. Measurements of omega and lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999)

  3. 3.

    & Cosmic acceleration, dark energy and fundamental physics. J. Phys. Soc. Jpn 76, 111015 (2007)

  4. 4.

    An asymptotically vanishing time-dependent cosmological “constant”. Astron. Astrophys. 301, 321–328 (1995)

  5. 5.

    Perturbations in a coupled scalar field cosmology. Mon. Not. R. Astron. Soc. 312, 521–530 (2000)

  6. 6.

    , , & Is cosmic speed-up due to new gravitational physics? Phys. Rev. D 70, 043528 (2004)

  7. 7.

    , & 4D gravity on a brane in 5D Minkowski space. Phys. Lett. B 485, 208–214 (2000)

  8. 8.

    , & Reconciling dark energy models with f(R) theories. Phys. Rev. D 71, 043503 (2005)

  9. 9.

    Cosmic growth history and expansion history. Phys. Rev. D 72, 043529 (2005)

  10. 10.

    et al. A measurement of the cosmological mass density from clustering in the 2dF Galaxy Redshift Survey. Nature 410, 169–173 (2001)

  11. 11.

    et al. The VIMOS VLT deep survey. First epoch VVDS-deep survey: 11,564 spectra with 17.5 ≤ IAB ≤ 24, and the redshift distribution over 0 ≤ z ≤ 5. Astron. Astrophys. 439, 845–862 (2005)

  12. 12.

    et al. The VIMOS-VLT Deep Survey: first data release of the IAB<22.5 wide survey. Astron. Astrophys. (submitted)

  13. 13.

    , & Probing Newton’s constant on vast scales: DGP gravity, cosmic acceleration and large-scale structure. Phys. Rev. D 69, 124015 (2004)

  14. 14.

    & Cluster abundance constraints for cosmological models with a time-varying, spatially inhomogeneous energy component with negative pressure. Astrophys. J. 508, 483–490 (1998)

  15. 15.

    , & Constraints on perfect fluid and scalar dark energy models from future redshift surveys. Mon. Not. R. Astron. Soc. 357, 429–439 (2005)

  16. 16.

    , & Growth rate of large-scale structure as a powerful probe of dark energy. Phys. Rev. D 69, 027301 (2004)

  17. 17.

    & A survey of galaxy redshifts. V. The two-point position and velocity correlations. Astrophys. J. 267, 465–482 (1983)

  18. 18.

    Clustering in real space and in redshift space. Mon. Not. R. Astron. Soc. 227, 1–21 (1987)

  19. 19.

    in The Evolving Universe Vol. 231 185–276 (ASSL Series, Kluwer Academic, Dordrecht, 1998)

  20. 20.

    et al. The 2dF Galaxy Redshift Survey: the bias of galaxies and the density of the Universe. Mon. Not. R. Astron. Soc. 335, 432–440 (2002)

  21. 21.

    et al. The 2dF Galaxy Redshift Survey: correlation functions, peculiar velocities and the matter density of the Universe. Mon. Not. R. Astron. Soc. 346, 78–96 (2003)

  22. 22.

    & The hierarchical formation of the brightest cluster galaxies. Mon. Not. R. Astron. Soc. 375, 2–14 (2006)

  23. 23.

    et al. The VIMOS VLT Deep Survey. Evolution of the non-linear galaxy bias up to z = 1.5. Astron. Astrophys. 442, 801–825 (2005)

  24. 24.

    et al. Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: implications for cosmology. Astrophys. J. 170 (Suppl.). 377–408 (2007)

  25. 25.

    et al. Measuring Ωm with the ROSAT Deep Cluster Survey. Astrophys. J. 561, 13–21 (2001)

  26. 26.

    , , & The REFLEX galaxy cluster survey. VII. Ωm and s8 from cluster abundance and large-scale clustering. Astron. Astrophys. 398, 867–877 (2003)

  27. 27.

    et al. The 2dF-SDSS LRG and QSO Survey: the 2-point correlation function and redshift-space distortions. Mon. Not. R. Astron. Soc. 381, 573–588 (2007)

  28. 28.

    & An evolution free test for non-zero cosmological constant. Nature 281, 358–359 (1979)

Download references

Acknowledgements

L.G. thanks M. Longair, C. Baugh, C. Porciani, P. Norberg, J. Peacock, A. Szalay and Y. Wang for discussions, S. White for suggestions and encouragement and L. Amendola, C. Di Porto and E. Linder for providing model predictions in electronic form. G. Pratt, S. White and E. Linder are gratefully acknowledged for reading the manuscript. L.G. acknowledges the support and hospitality of MPE, MPA and the European Southern Observatory (ESO) during this work. This research has been developed within the framework of the VVDS consortium and has been partially supported by the CNRS-INSU and its Programme National de Cosmologie (France), and by PRIN-INAF 2005. The VLT-VIMOS observations were carried out on guaranteed time allocated by the ESO to the VIRMOS consortium, under a contractual agreement between the CNRS of France, heading a consortium of French and Italian institutes, and the ESO, to design, manufacture and test the VIMOS instrument.

Author Contributions All authors worked on the preparation, observation, reduction and measurement of the spectroscopic data using codes developed by B.G., D.B., R.S., M.S., P.F., S.P. and A.Z. Spectroscopy was based on imaging data procured and processed by H.J.McC., S.F., O.L.F., M.R. and A.I. and organized in a database by V.L.B. and L.T. L.G., B.M., A.P., O.L.F., S.d.l.T. and M.P. developed the codes to measure galaxy correlations. M.P., E.B., L.G., C.M., L.M. and K.D. modelled the measurements and performed the Monte Carlo tests. J.B. and G.D.L. built the mock samples that were processed to mimic the VVDS by B.M., B.G. and P.M. This paper is dedicated to P. Schuecker.

Author information

Affiliations

  1. INAF–Osservatorio Astronomico di Brera, Via Bianchi 46, I-23807 Merate (LC), Italy

    • L. Guzzo
    • , O. Cucciati
    •  & A. Iovino
  2. Max Planck Institut für extraterrestrische Physik,

    • L. Guzzo
  3. Max Planck Institut für Astrophysik,

    • L. Guzzo
    • , M. Pierleoni
    • , J. Blaizot
    • , G. De Lucia
    •  & K. Dolag
  4. European Southern Observatory, D-85748 Garching, Germany

    • L. Guzzo
  5. INAF–IASF, Via Bassini 15, I-20133, Milano, Italy

    • B. Meneux
    • , B. Garilli
    • , D. Bottini
    • , D. Maccagni
    • , M. Scodeggio
    • , P. Franzetti
    • , P. Memeo
    •  & D. Vergani
  6. Dipartimento di Fisica, Universitá Roma III, Via della Vasca Navale 84, I-00146 Roma, Italy

    • E. Branchini
  7. Laboratoire d’Astrophysique de Marseille, UMR6110, CNRS-Université de Provence, BP8, F-13376 Marseille cedex 12, France

    • O. Le Fèvre
    • , A. Pollo
    • , V. Le Brun
    • , L. Tresse
    • , C. Adami
    • , S. Arnouts
    • , S. de la Torre
    •  & A. Mazure
  8. Centre de Physique Theorique, UMR 6207 CNRS-Université de Provence, F-13288 Marseille, France

    • C. Marinoni
  9. The Andrzej Soltan Institute for Nuclear Research, Hoza 69, 00-681 Warsawa, Poland

    • A. Pollo
  10. Institut d’Astrophysique de Paris, UMR 7095, 98 bis Bvd Arago,

    • H. J. McCracken
    •  & S. Charlot
  11. Observatoire de Paris, LERMA, 61 Avenue de l'Observatoire, F-75014 Paris, France

    • H. J. McCracken
  12. Laboratoire d’Astrophysique de l’Observatoire Midi-Pyrénées (UMR 5572), 14 avenue E. Belin, F-31400 Toulouse, France

    • J. P. Picat
    • , T. Contini
    • , R. Pellò
    •  & E. Perez-Montero
  13. INAF–IRA, Via Gobetti 101, I-40129 Bologna, Italy

    • R. Scaramella
    • , G. Vettolani
    •  & A. Zanichelli
  14. INAF–Osservatorio Astronomico di Roma, Via di Frascati 33, I-00040 Monte Porzio Catone, Italy

    • R. Scaramella
  15. INAF–Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna, Italy

    • S. Bardelli
    • , M. Bolzonella
    • , A. Cappi
    • , P. Ciliegi
    • , F. Lamareille
    • , R. Merighi
    • , L. Pozzetti
    • , G. Zamorani
    •  & E. Zucca
  16. Università di Bologna, Dipartimento di Astronomia, Via Ranzani 1, I-40127 Bologna, Italy

    • A. Bongiorno
    • , B. Marano
    •  & L. Moscardini
  17. Dipartimento di Fisica–Universitá di Milano-Bicocca, Piazza delle Scienze 3, I-20126 Milano, Italy

    • O. Cucciati
  18. School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK

    • S. Foucaud
  19. Astrophysikalisches Institut Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany

    • I. Gavignaud
  20. Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, Hawaii 96822, USA

    • O. Ilbert
  21. INFN–Sezione di Bologna, viale Berti-Pichat 6/2, I-40127 Bologna, Italy

    • L. Moscardini
  22. Geneva Observatory, ch. des Maillettes 51, CH-1290 Sauverny, Switzerland

    • S. Paltani
  23. Integral Science Data Centre, ch. d'Ecogia 16, CH-1290 Versoix, Switzerland

    • S. Paltani
  24. INAF–Osservatorio Astronomico di Capodimonte, Via Moiariello 16 I-80131, Napoli, Italy

    • M. Radovich

Authors

  1. Search for L. Guzzo in:

  2. Search for M. Pierleoni in:

  3. Search for B. Meneux in:

  4. Search for E. Branchini in:

  5. Search for O. Le Fèvre in:

  6. Search for C. Marinoni in:

  7. Search for B. Garilli in:

  8. Search for J. Blaizot in:

  9. Search for G. De Lucia in:

  10. Search for A. Pollo in:

  11. Search for H. J. McCracken in:

  12. Search for D. Bottini in:

  13. Search for V. Le Brun in:

  14. Search for D. Maccagni in:

  15. Search for J. P. Picat in:

  16. Search for R. Scaramella in:

  17. Search for M. Scodeggio in:

  18. Search for L. Tresse in:

  19. Search for G. Vettolani in:

  20. Search for A. Zanichelli in:

  21. Search for C. Adami in:

  22. Search for S. Arnouts in:

  23. Search for S. Bardelli in:

  24. Search for M. Bolzonella in:

  25. Search for A. Bongiorno in:

  26. Search for A. Cappi in:

  27. Search for S. Charlot in:

  28. Search for P. Ciliegi in:

  29. Search for T. Contini in:

  30. Search for O. Cucciati in:

  31. Search for S. de la Torre in:

  32. Search for K. Dolag in:

  33. Search for S. Foucaud in:

  34. Search for P. Franzetti in:

  35. Search for I. Gavignaud in:

  36. Search for O. Ilbert in:

  37. Search for A. Iovino in:

  38. Search for F. Lamareille in:

  39. Search for B. Marano in:

  40. Search for A. Mazure in:

  41. Search for P. Memeo in:

  42. Search for R. Merighi in:

  43. Search for L. Moscardini in:

  44. Search for S. Paltani in:

  45. Search for R. Pellò in:

  46. Search for E. Perez-Montero in:

  47. Search for L. Pozzetti in:

  48. Search for M. Radovich in:

  49. Search for D. Vergani in:

  50. Search for G. Zamorani in:

  51. Search for E. Zucca in:

Corresponding author

Correspondence to L. Guzzo.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    The file contains Supplementary Notes with additional references and Supplementary Figures 1-2 with Legends.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature06555

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.