Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The X-ray crystal structure of RNA polymerase from Archaea

An Erratum to this article was published on 13 March 2008

Abstract

The transcription apparatus in Archaea can be described as a simplified version of its eukaryotic RNA polymerase (RNAP) II counterpart, comprising an RNAPII-like enzyme as well as two general transcription factors, the TATA-binding protein (TBP) and the eukaryotic TFIIB orthologue TFB1,2. It has been widely understood that precise comparisons of cellular RNAP crystal structures could reveal structural elements common to all enzymes and that these insights would be useful in analysing components of each enzyme that enable it to perform domain-specific gene expression. However, the structure of archaeal RNAP has been limited to individual subunits3,4. Here we report the first crystal structure of the archaeal RNAP from Sulfolobus solfataricus at 3.4 Å resolution, completing the suite of multi-subunit RNAP structures from all three domains of life. We also report the high-resolution (at 1.76 Å) crystal structure of the D/L subcomplex of archaeal RNAP and provide the first experimental evidence of any RNAP possessing an iron–sulphur (Fe–S) cluster, which may play a structural role in a key subunit of RNAP assembly. The striking structural similarity between archaeal RNAP and eukaryotic RNAPII highlights the simpler archaeal RNAP as an ideal model system for dissecting the molecular basis of eukaryotic transcription.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three-dimensional structure of the archaeal RNAP.
Figure 2: Cellular RNAP structures from three domains of life.
Figure 3: Structures around the foot domains from three domains of life.
Figure 4: The Fe–S cluster may play a structural role in D-subunit folding.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Coordinates and structure factors have been deposited at the Protein Data Bank (accession codes 2PMZ and 2PA8 for the S. solfataricus RNAP and D/L subcomplex structures, respectively).

References

  1. Bell, S. D. & Jackson, S. P. Transcription and translation in Archaea: a mosaic of eukaryal and bacterial features. Trends Microbiol. 6, 222–228 (1998)

    Article  CAS  Google Scholar 

  2. Geiduschek, E. P. & Ouhammouch, M. Archaeal transcription and its regulators. Mol. Microbiol. 56, 1397–1407 (2005)

    Article  CAS  Google Scholar 

  3. Todone, F., Brick, P., Werner, F., Weinzierl, R. O. & Onesti, S. Structure of an archaeal homolog of the eukaryotic RNA polymerase II RPB4/RPB7 complex. Mol. Cell 8, 1137–1143 (2001)

    Article  CAS  Google Scholar 

  4. Yee, A. et al. Solution structure of the RNA polymerase subunit RPB5 from Methanobacterium thermoautotrophicum . Proc. Natl Acad. Sci. USA 97, 6311–6315 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Ebright, R. H. RNA polymerase: structural similarities between bacterial RNA polymerase and eukaryotic RNA polymerase II. J. Mol. Biol. 304, 687–698 (2000)

    Article  CAS  Google Scholar 

  6. Zhang, G. et al. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 Å resolution. Cell 98, 811–824 (1999)

    Article  CAS  Google Scholar 

  7. Murakami, K. S., Masuda, S. & Darst, S. A. Structural basis of transcription initiation: RNA polymerase holoenzyme at 4 Å resolution. Science 296, 1280–1284 (2002)

    Article  ADS  CAS  Google Scholar 

  8. Cramer, P., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 292, 1863–1876 (2001)

    Article  ADS  CAS  Google Scholar 

  9. Bushnell, D. A., Westover, K. D., Davis, R. E. & Kornberg, R. D. Structural basis of transcription: an RNA polymerase II-TFIIB cocrystal at 4.5 angstroms. Science 303, 983–988 (2004)

    Article  ADS  CAS  Google Scholar 

  10. Wang, D., Bushnell, D. A., Westover, K. D., Kaplan, C. D. & Kornberg, R. D. Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis. Cell 127, 941–954 (2006)

    Article  CAS  Google Scholar 

  11. Bushnell, D. A. & Kornberg, R. D. Complete, 12-subunit RNA polymerase II at 4.1-Å resolution: implications for the initiation of transcription. Proc. Natl Acad. Sci. USA 100, 6969–6973 (2003)

    Article  ADS  CAS  Google Scholar 

  12. Armache, K. J., Kettenberger, H. & Cramer, P. Architecture of initiation-competent 12-subunit RNA polymerase II. Proc. Natl Acad. Sci. USA 100, 6964–6968 (2003)

    Article  ADS  CAS  Google Scholar 

  13. Armache, K. J., Mitterweger, S., Meinhart, A. & Cramer, P. Structures of complete RNA polymerase II and its subcomplex, Rpb4/7. J. Biol. Chem. 280, 7131–7134 (2005)

    Article  CAS  Google Scholar 

  14. Westover, K. D., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: nucleotide selection by rotation in the RNA polymerase II active center. Cell 119, 481–489 (2004)

    Article  CAS  Google Scholar 

  15. Goede, B., Naji, S., von Kampen, O., Ilg, K. & Thomm, M. Protein–protein interactions in the archaeal transcriptional machinery: binding studies of isolated RNA polymerase subunits and transcription factors. J. Biol. Chem. 281, 30581–30592 (2006)

    Article  CAS  Google Scholar 

  16. Fernandez-Tornero, C. et al. Insights into transcription initiation and termination from the electron microscopy structure of yeast RNA polymerase III. Mol. Cell 25, 813–823 (2007)

    Article  CAS  Google Scholar 

  17. Ouhammouch, M., Werner, F., Weinzierl, R. O. & Geiduschek, E. P. A fully recombinant system for activator-dependent archaeal transcription. J. Biol. Chem. 279, 51719–51721 (2004)

    Article  CAS  Google Scholar 

  18. Naji, S., Grunberg, S. & Thomm, M. The RPB7 orthologue E′ is required for transcriptional activity of a reconstituted archaeal core enzyme at low temperatures and stimulates open complex formation. J. Biol. Chem. 282, 11047–11057 (2007)

    Article  CAS  Google Scholar 

  19. Werner, F. & Weinzierl, R. O. Direct modulation of RNA polymerase core functions by basal transcription factors. Mol. Cell. Biol. 25, 8344–8355 (2005)

    Article  CAS  Google Scholar 

  20. Chlenov, M. et al. Structure and function of lineage-specific sequence insertions in the bacterial RNA polymerase beta′ subunit. J. Mol. Biol. 353, 138–154 (2005)

    Article  CAS  Google Scholar 

  21. Ishihama, A., Taketo, M., Saitoh, T. & Fukuda, R. in RNA polymerase (eds Losick, R. & Chamberlin, M.) 485–502 (Cold Spring Harbor Laboratory, New York, 1976)

    Google Scholar 

  22. Zillig, W., Palm, P. & Heil, A. in RNA polymerase (eds Losick, R. & Chamberlin, M.) 101–125 (Cold Spring Harbor Laboratory, New York, 1976)

    Google Scholar 

  23. Rodriguez-Monge, L., Ouzounis, C. A. & Kyrpides, N. C. A ferredoxin-like domain in RNA polymerase 30/40-kDa subunits. Trends Biochem. Sci. 23, 169–170 (1998)

    Article  CAS  Google Scholar 

  24. Thomas, M. C. & Chiang, C. M. The general transcription machinery and general cofactors. Crit. Rev. Biochem. Mol. Biol. 41, 105–178 (2006)

    Article  CAS  Google Scholar 

  25. Zalenskaya, K. et al. Recombinant RNA polymerase: inducible overexpression, purification and assembly of Escherichia coli rpo gene products. Gene 89, 7–12 (1990)

    Article  CAS  Google Scholar 

  26. Murakami, K. et al. Positioning of two alpha subunit carboxy-terminal domains of RNA polymerase at promoters by two transcription factors. Proc. Natl Acad. Sci. USA 94, 11274–11278 (1997)

    Article  ADS  CAS  Google Scholar 

  27. Kapanidis, A. N. et al. Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanism. Science 314, 1144–1147 (2006)

    Article  ADS  Google Scholar 

  28. Vassylyev, D. G. et al. Structural basis for substrate loading in bacterial RNA polymerase. Nature 448, 163–168 (2007)

    Article  ADS  CAS  Google Scholar 

  29. Werner, F. & Weinzierl, R. O. A recombinant RNA polymerase II-like enzyme capable of promoter-specific transcription. Mol. Cell 10, 635–646 (2002)

    Article  CAS  Google Scholar 

  30. Campbell, E. A. et al. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104, 901–912 (2001)

    Article  CAS  Google Scholar 

  31. Otwinowski, Z. & Minor, W. in Macromolecular Crystallography Part A (ed. Charles W. Carter Jr) 307–326 (Academic Press, New York, 1997)

    Book  Google Scholar 

  32. McCoy, A. J., Grosse-Kunstleve, R. W., Storoni, L. C. & Read, R. J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D Biol. Crystallogr. 61, 458–464 (2005)

    Article  Google Scholar 

  33. Terwilliger, T. C. Maximum-likelihood density modification. Acta Crystallogr. D 56, 965–972 (2000)

    Article  CAS  Google Scholar 

  34. Brunger, A. T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  CAS  Google Scholar 

  35. Winn, M. D., Isupov, M. N. & Murshudov, G. N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. D 57, 122–133 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Berman and A. Héroux at the National Synchrotron Light Source, D. Lessner and H. Yennawar at The Pennsylvania State University, and D. Bushnell and R. Kornberg at Stanford University for help. We thank E. P. Geiduschek, J. G. Ferry, S. A. Darst, F. Asturias, V. Lamour and R. Yajima for critiques of the manuscript. This work was supported by The Pew Scholars Program in the Biomedical Sciences and supported in part by the National Institutes of Health.

Author Contributions A.H. crystallized and solved the structures of the S. solfataricus RNAP and D/L subcomplex. B.J.K. supported the RNAP purification and its structure determination. K.S.M. and A.H. wrote the manuscript, and all authors discussed the results and commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuhiko S. Murakami.

Supplementary information

Supplementary Information

The file contains Supplementary Discussion, Supplementary Tables 1-4, additional references and Supplementary Figures 1-16 with Legends. (PDF 5965 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirata, A., Klein, B. & Murakami, K. The X-ray crystal structure of RNA polymerase from Archaea. Nature 451, 851–854 (2008). https://doi.org/10.1038/nature06530

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06530

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing