Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Giant magneto-elastic coupling in multiferroic hexagonal manganites

Abstract

The motion of atoms in a solid always responds to cooling or heating in a way that is consistent with the symmetry of the given space group of the solid to which they belong1,2. When the atoms move, the electronic structure of the solid changes, leading to different physical properties. Therefore, the determination of where atoms are and what atoms do is a cornerstone of modern solid-state physics. However, experimental observations of atomic displacements measured as a function of temperature are very rare, because those displacements are, in almost all cases, exceedingly small3,4,5. Here we show, using a combination of diffraction techniques, that the hexagonal manganites RMnO3 (where R is a rare-earth element) undergo an isostructural transition with exceptionally large atomic displacements: two orders of magnitude larger than those seen in any other magnetic material, resulting in an unusually strong magneto-elastic coupling. We follow the exact atomic displacements of all the atoms in the unit cell as a function of temperature and find consistency with theoretical predictions based on group theories. We argue that this gigantic magneto-elastic coupling in RMnO3 holds the key to the recently observed magneto-electric phenomenon in this intriguing class of materials6.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Crystal structure of hexagonal RMnO 3 with arrows indicating experimentally observed atomic displacements.
Figure 2: Temperature dependence of the lattice constants and the unit-cell volume together with atomic positions.
Figure 3: Temperature dependence of the Mn x position and the Mn–O bond distances obtained from high-resolution neutron and synchrotron powder diffraction experiments.

References

  1. 1

    Hahn, T. International Tables for Crystallography Vol. A (Kluwer Academic, Amsterdam, 1996)

    MATH  Google Scholar 

  2. 2

    Bruce, A. D. & Cowley, R. A. Structural Phase Transitions (Taylor & Francis, London, 1981)

    Book  Google Scholar 

  3. 3

    Scott, J. F. Soft-mode spectroscopy: Experimental studies of structural phase transitions. Rev. Mod. Phys. 46, 83–128 (1974)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Wyckoff, R. W. Crystal Structures (Krieger Publishing, New York, 1986)

    MATH  Google Scholar 

  5. 5

    Mizokawa, T., Khomskii, D. I. & Sawatzky, G. A. Interplay between orbital ordering and lattice distortions in LaMnO3, YVO3, and YTiO3 . Phys. Rev. B 60, 7309–7313 (1999)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Lottermoser, T. et al. Magnetic phase control by an electric field. Nature 430, 541–544 (2004)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Jin, S. et al. Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264, 413–415 (1994)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Gilleo, M. A. Crystallographic studies of perovskite-like compounds. III. La(Mx, Mn1-x)O3 with M = Co, Fe and Cr. Acta Crystallogr. 10, 161–166 (1957)

    CAS  Article  Google Scholar 

  9. 9

    Yakel, H., Koehler, W., Bertaut, E. & Forrat, F. On the crystal structure of the manganese(III) trioxides of the heavy lanthanides and yttrium. Acta Crystallogr. 16, 957–962 (1963)

    CAS  Article  Google Scholar 

  10. 10

    Rai, R. C. et al. Spin-charge coupling and the high-energy magnetodielectric effect in hexagonal HoMnO3 . Phys. Rev. B 75, 184414 (2007)

    ADS  Article  Google Scholar 

  11. 11

    Tokura, Y. & Nagaosa, N. Orbital physics in transition-metal oxides. Science 288, 462–468 (2000)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Smolenskii, G. A. & Chupis, I. E. Ferroelectromagnets. Sov. Phys. Usp. 25, 475–493 (1982)

    ADS  Article  Google Scholar 

  13. 13

    Park, J. et al. Magnetic ordering and spin liquid state of YMnO3 . Phys. Rev. B 68, 104426 (2003)

    ADS  Article  Google Scholar 

  14. 14

    Sato, T. J. et al. Unconventional spin fluctuations in the hexagonal antiferromagnet YMnO3 . Phys. Rev. B 68, 014432 (2003)

    ADS  Article  Google Scholar 

  15. 15

    Bertaut, E. F. & Mercier, M. Structure magnetique de MnYO3 . Phys. Lett. 5, 27–29 (1963)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Huang, Z. J., Cao, Y., Sun, Y. Y., Xue, Y. Y. & Chu, C. W. Coupling between the ferroelectric and antiferromagnetic orders in YMnO3 . Phys. Rev. B 56, 2623–2626 (1997)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Fiebig, M., Lottermoser, Fröhlich, D., Goltsev, A. V. & Pisarev, R. V. Observation of coupled magnetic and electric domains. Nature 419, 818–820 (2002)

    ADS  CAS  Article  Google Scholar 

  18. 18

    van Aken, B. B. & Palstra, T. T. M. Influence of magnetic on ferroelectric ordering in LuMnO3 . Phys. Rev. B 69, 134113 (2004)

    ADS  Article  Google Scholar 

  19. 19

    Lee, S. et al. Direct observation of a coupling between spin, lattice, and electric dipole moment in multiferroic YMnO3 . Phys. Rev. B 71, 180413(R) (2005)

    ADS  Article  Google Scholar 

  20. 20

    Sharma, P. A. et al. Thermal conductivity of geometrically frustrated/ferroelectric YMnO3: evidence for extraordinary spin-phonon interactions. Phys. Rev. Lett. 93, 177202 (2004)

    ADS  CAS  Article  Google Scholar 

  21. 21

    dela Cruz, C. et al. Strong spin-lattice coupling in multiferroic HoMnO3: thermal expansion anomalies and pressure effect. Phys. Rev. B 71, 060407(R) (2005)

    ADS  Article  Google Scholar 

  22. 22

    Souchkov, A. B. et al. Exchange intraction effects on the optical properties of LuMnO3 . Phys. Rev. Lett. 91, 027203 (2003)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Ramirez, A. P. in Handbook of Magnetic Materials Vol. 13 (ed. Buschow, K. J.) Ch. 4 (Elsevier Science, Amsterdam, 2001)

    Google Scholar 

  24. 24

    Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Cheong, S.-W. & Mostovoy, M. Multiferroic: a magnetic twist for ferroelectricity. Nature Mater. 6, 13–20 (2007)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Gozzo, F. et al. The instrumental resolution function of synchrotron radiation powder diffractometers in the presence of focusing optics. J. Appl. Cryst. 39, 347–357 (2006)

    CAS  Article  Google Scholar 

  27. 27

    Izumi, F. & Ikeda, T. A Rietveld-analysis program RIETAN-98 and its applications to zeolites. Mater. Sci. Forum 321–324, 198–203 (2000)

    Article  Google Scholar 

  28. 28

    Rodriguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55–69 (1993)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with N. Hur, C. J. Fennie, and S. Streltsov, and thank the Korea Basic Science Institute for allowing us to use a heat capacity set-up. Work at Sungkyunkwan University was supported by the Korea Research Foundation, the CSCMR at Seoul National University, the CNRF project, and the LG Yonam Foundation. Work at Rutgers was supported by the National Science Foundation – MRSEC and work at Tohoku University was supported by a Grant-in-Aid for Scientific Research on Priority Areas. J.-G.P. acknowledges the KEK, where the final manuscript was prepared, for hospitality.

Author Contributions J.-G.P. planned the study and supervised the analysis. S.L. synthesized all powder samples and carried out powder diffraction experiments with the help of M.K., M.Y., T.K., F.G. and N.S. S.L. analysed the diffraction data together with A.P. and T.K. K.-H.J. measured and analysed the susceptibility and heat capacity data with J.-G.P. S.-W.C. provided single-crystal YMnO3. J.-G.P. performed the single-crystal X-ray experiments with the help of H.K. and Y.N. J.-G.P. discussed the results with S.L., A.P., T.K., S.-W.C. and Y.N., and wrote the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J.-G. Park.

Supplementary information

Supplementary Information

The file contains Supplementary Table S1-S2 and Supplementary Figures S1-S7 with Legends. (PDF 980 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, S., Pirogov, A., Kang, M. et al. Giant magneto-elastic coupling in multiferroic hexagonal manganites. Nature 451, 805–808 (2008). https://doi.org/10.1038/nature06507

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing