Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The nonlinear Fano effect

A Corrigendum to this article was published on 21 February 2008

Abstract

The Fano effect1 is ubiquitous in the spectroscopy of, for instance, atoms1,2, bulk solids3,4 and semiconductor heterostructures5,6,7. It arises when quantum interference takes place between two competing optical pathways, one connecting the energy ground state and an excited discrete state, the other connecting the ground state with a continuum of energy states. The nature of the interference changes rapidly as a function of energy, giving rise to characteristically asymmetric lineshapes. The Fano effect is particularly important in the interpretation of electronic transport5,6 and optical spectra7,8 in semiconductors. Whereas Fano’s original theory1 applies to the linear regime at low power, at higher power a laser field strongly admixes the states and the physics becomes rich, leading, for example, to a remarkable interplay of coherent nonlinear transitions9. Despite the general importance of Fano physics, this nonlinear regime has received very little attention experimentally, presumably because the classic autoionization processes2, the original test-bed of Fano’s ideas1, occur in an inconvenient spectral region, the deep ultraviolet. Here we report experiments that access the nonlinear Fano regime by using semiconductor quantum dots, which allow both the continuum states to be engineered and the energies to be rescaled to the near infrared. We measure the absorption cross-section of a single quantum dot and discover clear Fano resonances that we can tune with the device design or even in situ with a voltage bias. In parallel, we develop a nonlinear theory applicable to solid-state systems with fast relaxation of carriers. In the nonlinear regime, the visibility of the Fano quantum interferences increases dramatically, affording a sensitive probe of continuum coupling. This could be a unique method to detect weak couplings of a two-level quantum system (qubits), which should ideally be decoupled from all other states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic level diagrams.
Figure 2: Laser spectroscopy on a single quantum dot.
Figure 3: Voltage dependence of the Fano resonance.

Similar content being viewed by others

References

  1. Fano, U. Effects of configuration interactions on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961)

    Article  CAS  ADS  Google Scholar 

  2. Madden, R. P. & Codling, K. New autoionizing atomic energy levels in He, Ne, and Ar. Phys. Rev. Lett. 10, 516–518 (1963)

    Article  CAS  ADS  Google Scholar 

  3. Cerdeira, F., Fjeldly, T. A. & Cardona, M. Effect of free carriers on zone-center vibrational modes in heavily doped p-type Si. II. Optical modes. Phys. Rev. B 8, 4734–4745 (1973)

    Article  CAS  ADS  Google Scholar 

  4. Hase, M., Demsar, J. & Kitajima, M. Photoinduced Fano resonance of coherent phonons in zinc. Phys. Rev. B 74, 212301 (2006)

    Article  ADS  Google Scholar 

  5. Faist, J., Capasso, F., Sirtori, C., West, K. W. & Pfeiffer, L. N. Controlling the sign of quantum interference by tunnelling from quantum wells. Nature 390, 589–592 (1997)

    Article  CAS  ADS  Google Scholar 

  6. Schmidt, H., Campman, K. L., Gossard, A. C. & Imamoglu, A. Tunneling induced transparency: Fano interference in intersubband transitions. Appl. Phys. Lett. 70, 3455–3457 (1997)

    Article  CAS  ADS  Google Scholar 

  7. Bar-Ad, S., Kner, S., Marquezini, M. V., Mukamel, S. & Chemla, D. S. Quantum confined Fano interference. Phys. Rev. Lett. 78, 1363–1366 (1997)

    Article  CAS  ADS  Google Scholar 

  8. Wagner, J. & Cardona, M. Electronic Raman scattering in heavily doped p-type germanium. Phys. Rev. B 32, 8071–8077 (1985)

    Article  CAS  ADS  Google Scholar 

  9. Rzazewski, K. & Eberly, J. H. Confluence of bound-free coherences in laser-induced autoionization. Phys. Rev. Lett. 47, 408–412 (1981)

    Article  CAS  ADS  Google Scholar 

  10. Högele, A. et al. Voltage-controlled optics of a quantum dot. Phys. Rev. Lett. 93, 217401 (2004)

    Article  ADS  Google Scholar 

  11. Zrenner, A. et al. Coherent properties of a two-level system based on a quantum dot photodiode. Nature 418, 612–614 (2002)

    Article  CAS  ADS  Google Scholar 

  12. Gammon, D. & Steel, D. G. Optical studies of single quantum dots. Phys. Today 55, 36–41 (2002)

    Article  CAS  Google Scholar 

  13. Stufler, S., Ester, P., Zrenner, A. & Bichler, M. Quantum optical properties of a single InxGa1-xAs-GaAs quantum dot two-level system. Phys. Rev. B 72, 121301(R) (2005)

    Article  ADS  Google Scholar 

  14. Reithmaier, J. P. et al. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432, 197–200 (2004)

    Article  CAS  ADS  Google Scholar 

  15. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004)

    Article  CAS  ADS  Google Scholar 

  16. Peter, E. et al. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95, 067401 (2005)

    Article  CAS  ADS  Google Scholar 

  17. Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature 445, 896–899 (2007)

    Article  CAS  ADS  Google Scholar 

  18. Warburton, R. J. et al. Optical emission from a charge-tunable quantum ring. Nature 405, 926–929 (2000)

    Article  CAS  ADS  Google Scholar 

  19. Loudon, R. The Quantum Theory of Light 3rd edn (Oxford Univ. Press, Oxford, 2000)

    MATH  Google Scholar 

  20. Kroner, M. et al. Resonant saturation laser spectroscopy of a single self-assembled quantum dot. Physica E (in the press)

  21. Alén, B. et al. Absorptive and dispersive optical responses of excitons in a single quantum dot. Appl. Phys. Lett. 89, 123124 (2006)

    Article  ADS  Google Scholar 

  22. Atatüre, M. et al. Observation of Faraday rotation from a single confined spin. Nature Phys. 3, 101–105 (2007)

    Article  ADS  Google Scholar 

  23. Seidl, S. et al. Absorption and photoluminescence spectroscopy on a single self-assembled charge tunable quantum dot. Phys. Rev. B 72, 195339 (2005)

    Article  ADS  Google Scholar 

  24. Rzazewski, K. & Eberly, J. H. Photoexcitation of an autoionizing resonance in the presence of offdiagonal relaxation. Phys. Rev. A 27, 2026–2042 (1983)

    Article  CAS  ADS  Google Scholar 

  25. Smith, J. M. et al. Voltage control of the spin dynamics of an exciton in a semiconductor quantum dot. Phys. Rev. Lett. 94, 197402 (2005)

    Article  CAS  ADS  Google Scholar 

  26. Govorov, A. O., Warburton, R. J. & Karrai, K. Kondo excitons in self-assembled quantum dots. Phys. Rev. B 67, 241307(R) (2003)

    Article  ADS  Google Scholar 

  27. Bayer, M. et al. Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators. Phys. Rev. Lett. 86, 3168–3171 (2001)

    Article  CAS  ADS  Google Scholar 

  28. Zhang, W., Govorov, A. O. & Bryant, G. W. Semiconductor-metal nanoparticle molecules: hybrid excitons and non-linear Fano effect. Phys. Rev. Lett. 97, 146804 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Högele for discussions and J. P. Kotthaus for support. The work was supported by SFB 631 (Germany), AvHF (Germany), EPSRC (UK), NSF (USA) and SANDiE (EU). B.D.G. thanks the Royal Society of Edinburgh for financial support. Financial support from the German Excellence Initiative via the Nanosystems Initiative Munich (NIM), and from Ohio University Nanobiotechnology Initiative, is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Govorov.

Supplementary information

TITLE

This file contains Supplementary Figures 1-2 with Legends and Supplementary Theory including formulas. This file includes a general description of the Fano effect. The idea is to give a simple introduction to the Fano effect that can be understood even by “an enthusiastic student.” Furthermore it contains theoretical description for the coupling mechanism. (PDF 245 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kroner, M., Govorov, A., Remi, S. et al. The nonlinear Fano effect. Nature 451, 311–314 (2008). https://doi.org/10.1038/nature06506

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06506

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing