Letter | Published:

Slow dust in Enceladus' plume from condensation and wall collisions in tiger stripe fractures

Nature volume 451, pages 685688 (07 February 2008) | Download Citation

Subjects

Abstract

One of the spectacular discoveries of the Cassini spacecraft was the plume of water vapour and icy particles (dust) originating near the south pole of Saturn’s moon Enceladus1,2,3,4,5. The data imply considerably smaller velocities for the grains2,5,6 than for the vapour4,7, which has been difficult to understand. The gas and dust are too dilute in the plume to interact, so the difference must arise below the surface. Here we report a model for grain condensation and growth in channels of variable width. We show that repeated wall collisions of grains, with re-acceleration by the gas, induce an effective friction, offering a natural explanation for the reduced grain velocity. We derive particle speed and size distributions that reproduce the observed and inferred properties of the dust plume. The gas seems to form near the triple point of water; gas densities corresponding to sublimation from ice at temperatures less than 260 K are generally too low to support the measured particle fluxes2. This in turn suggests liquid water below Enceladus’ south pole.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Identification of a dynamic atmosphere at Enceladus with the Cassini magnetometer. Science 311, 1406–1409 (2006)

  2. 2.

    et al. Cassini dust measurements at Enceladus and implications for the origin of the E ring. Science 311, 1416–1418 (2006)

  3. 3.

    et al. Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure. Science 311, 1419–1422 (2006)

  4. 4.

    et al. Enceladus' water vapor plume. Science 311, 1422–1425 (2006)

  5. 5.

    et al. Cassini observes the active south pole of Enceladus. Science 311, 1393–1401 (2006)

  6. 6.

    , , & the Cassini ISS Team. Models of the Enceladus plumes. Bull. Am. Astron. Soc. 38, 508 (2006)

  7. 7.

    , , , & Monte Carlo simulations of the water vapor plumes on Enceladus. Icarus 188, 154–161 (2007)

  8. 8.

    , & Structure and particle properties of Saturn's E ring. Icarus 94, 451–473 (1991)

  9. 9.

    et al. Observations of Saturn's ring-plane crossing in August and November 1995. Science 272, 509–516 (1996)

  10. 10.

    , & Ring and plasma: the enigmae of Enceladus. Icarus 56, 426–438 (1983)

  11. 11.

    , , & The E ring of Saturn and satellite Enceladus. J. Geophys. Res. 89, 9459–9470 (1984)

  12. 12.

    & The volcanic and tectonic history of Enceladus. Icarus 119, 385–404 (1996)

  13. 13.

    et al. Cassini encounters Enceladus: background and the discovery of a south polar hot spot. Science 311, 1401–1405 (2006)

  14. 14.

    et al. Composition and physical properties of Enceladus. Surf. Sci. 311, 1425–1428 (2006)

  15. 15.

    & Association of the jets of Enceladus with the warmest regions on its south-polar fractures. Nature 449, 695–697 (2007)

  16. 16.

    et al. A clathrate reservoir hypothesis for Enceladus' south polar plume. Science 314, 1764–1766 (2006)

  17. 17.

    , , & Unified model of tectonics and heat transport in a frigid Enceladus. Proc. Natl Acad. Sci. USA 104, 13578–13591 (2007)

  18. 18.

    & Experimental determination of the thermal accommodation and condensation coefficients of water. J. Chem. Phys. 111, 10659–10663 (1999)

  19. 19.

    , , , & What determines the sticking probability of water molecules on ice? Phys. Rev. Lett. 95, 223201 (2005)

  20. 20.

    , , & Enceladus' plume: compositional evidence for a hot interior. Icarus 187, 569–573 (2007)

  21. 21.

    & Enceladus' south polar sea. Icarus 189, 72–82 (2007)

  22. 22.

    , , & Shear heating as the origin of the plumes and heat flux on Enceladus. Nature 447, 289–291 (2007)

  23. 23.

    , & Homogeneous nucleation rates for water. J. Chem. Phys. 99, 4680–4692 (1993)

  24. 24.

    & Saturn's E ring: a dynamical approach. J. Geophys. Res. 107, 1–10 (2002)

  25. 25.

    , & The dynamics of Saturn's E ring particles. Icarus 97, 248–259 (1992)

  26. 26.

    & Origin of Saturn’s E ring: selfsustained—naturally. Science 264, 550–553 (1994)

  27. 27.

    , , , & Eruptions arising from tidally controlled periodic openings of rifts on Enceladus. Nature 447, 292–294 (2007)

  28. 28.

    et al. The E ring in the vicinity of Enceladus I: spatial distribution and properties of the ring particles. Icarus (in the press)

Download references

Acknowledgements

We thank M. Burton, P. Krapivsky, H. Salo, T. Spilker, M. Sremčević and F. Tian for discussions. We acknowledge the efforts of the Cassini ISS team in the design and operation of the ISS instrument. This work was supported by Deutsches Zentrum für Luft und Raumfahrt and Deutsche Forschungsgemeinschaft.

Author information

Affiliations

  1. Nichtlineare Dynamik, Universität Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany

    • Jürgen Schmidt
    • , Nikolai Brilliantov
    •  & Frank Spahn
  2. Department of Mathematics, University of Leicester, Leicester LEI 7RH, UK

    • Nikolai Brilliantov
  3. Department of Physics, Moscow State University, 119991 Moscow, Russia

    • Nikolai Brilliantov
  4. Max Planck Institut für Kernphysik, 69117 Heidelberg, Germany

    • Sascha Kempf
  5. IGEP, Technische Universität Braunschweig, 38106 Braunschweig, Germany

    • Sascha Kempf

Authors

  1. Search for Jürgen Schmidt in:

  2. Search for Nikolai Brilliantov in:

  3. Search for Frank Spahn in:

  4. Search for Sascha Kempf in:

Corresponding author

Correspondence to Jürgen Schmidt.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    This file contains Supplementary Notes with additional references and Supplementary Figures S1-S8 with Legends.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature06491

Further reading

  • Circumplanetary Dust Populations

    • Frank Spahn
    • , Manuel Sachse
    • , Martin Seiß
    • , Hsiang-Wen Hsu
    • , Sascha Kempf
    •  & Mihály Horányi

    Space Science Reviews (2019)

  • Macromolecular organic compounds from the depths of Enceladus

    • Frank Postberg
    • , Nozair Khawaja
    • , Bernd Abel
    • , Gael Choblet
    • , Christopher R. Glein
    • , Murthy S. Gudipati
    • , Bryana L. Henderson
    • , Hsiang-Wen Hsu
    • , Sascha Kempf
    • , Fabian Klenner
    • , Georg Moragas-Klostermeyer
    • , Brian Magee
    • , Lenz Nölle
    • , Mark Perry
    • , René Reviol
    • , Jürgen Schmidt
    • , Ralf Srama
    • , Ferdinand Stolz
    • , Gabriel Tobie
    • , Mario Trieloff
    •  & J. Hunter Waite

    Nature (2018)

  • Dust Phenomena Relating to Airless Bodies

    • J. R. Szalay
    • , A. R. Poppe
    • , J. Agarwal
    • , D. Britt
    • , I. Belskaya
    • , M. Horányi
    • , T. Nakamura
    • , M. Sachse
    •  & F. Spahn

    Space Science Reviews (2018)

  • Timing of water plume eruptions on Enceladus explained by interior viscosity structure

    • Marie Běhounková
    • , Gabriel Tobie
    • , Ondřej Čadek
    • , Gaël Choblet
    • , Carolyn Porco
    •  & Francis Nimmo

    Nature Geoscience (2015)

  • Sublimation in bright spots on (1) Ceres

    • A. Nathues
    • , M. Hoffmann
    • , M. Schaefer
    • , L. Le Corre
    • , V. Reddy
    • , T. Platz
    • , E. A. Cloutis
    • , U. Christensen
    • , T. Kneissl
    • , J.-Y. Li
    • , K. Mengel
    • , N. Schmedemann
    • , T. Schaefer
    • , C. T. Russell
    • , D. M. Applin
    • , D. L. Buczkowski
    • , M. R. M. Izawa
    • , H. U. Keller
    • , D. P. O’Brien
    • , C. M. Pieters
    • , C. A. Raymond
    • , J. Ripken
    • , P. M. Schenk
    • , B. E. Schmidt
    • , H. Sierks
    • , M. V. Sykes
    • , G. S. Thangjam
    •  & J.-B. Vincent

    Nature (2015)

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.