Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles

Abstract

Listeria monocytogenes is an intracellular bacterial pathogen that replicates rapidly in the cytosol of host cells during acute infection1. Surprisingly, these bacteria were found to occupy vacuoles in liver granuloma macrophages during persistent infection of severe combined immunodeficient (SCID) mice2. Here we show that L. monocytogenes can replicate in vacuoles within macrophages. In livers of SCID mice infected for 21 days, we observed bacteria in large LAMP1+ compartments that we termed spacious Listeria-containing phagosomes (SLAPs). SLAPs were also observed in vitro, and were found to be non-acidic and non-degradative compartments that are generated in an autophagy-dependent manner. The replication rate of bacteria in SLAPs was found to be reduced compared to the rate of those in the cytosol. Listeriolysin O (LLO, encoded by hly), a pore-forming toxin essential for L. monocytogenes virulence1, was necessary and sufficient for SLAP formation. A L. monocytogenes mutant with low LLO expression was impaired for phagosome escape but replicated slowly in SLAPs over a 72 h period. Therefore, our studies reveal a role for LLO in promoting L. monocytogenes replication in vacuoles and suggest a mechanism by which this pathogen can establish persistent infection in host macrophages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: L. monocytogenes colonize SLAPs during chronic infection of SCID mice.
Figure 2: L. monocytogenes replicate slowly in SLAPs during in vitro infection of macrophages.
Figure 3: SLAP formation requires bacterial LLO expression.
Figure 4: Impaired LLO expression allows slow bacterial replication within vacuoles.

Similar content being viewed by others

References

  1. Portnoy, D. A., Auerbuch, V. & Glomski, I. J. The cell biology of Listeria monocytogenes infection: the intersection of bacterial pathogenesis and cell-mediated immunity. J. Cell Biol. 158, 409–414 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bhardwaj, V., Kanagawa, O., Swanson, P. E. & Unanue, E. R. Chronic Listeria infection in SCID mice: requirements for the carrier state and the dual role of T cells in transferring protection or suppression. J. Immunol. 160, 376–384 (1998)

    CAS  PubMed  Google Scholar 

  3. Kayal, S. & Charbit, A. Listeriolysin O: a key protein of Listeria monocytogenes with multiple functions. FEMS Microbiol. Rev. 30, 514–529 (2006)

    Article  CAS  PubMed  Google Scholar 

  4. Shaughnessy, L. M., Hoppe, A. D., Christensen, K. A. & Swanson, J. A. Membrane perforations inhibit lysosome fusion by altering pH and calcium in Listeria monocytogenes vacuoles. Cell. Microbiol. 8, 781–792 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Myers, J. T., Tsang, A. W. & Swanson, J. A. Localized reactive oxygen and nitrogen intermediates inhibit escape of Listeria monocytogenes from vacuoles in activated macrophages. J. Immunol. 171, 5447–5453 (2003)

    Article  CAS  PubMed  Google Scholar 

  6. del Cerro-Vadillo, E. et al. Cutting edge: a novel nonoxidative phagosomal mechanism exerted by cathepsin-D controls Listeria monocytogenes intracellular growth. J. Immunol. 176, 1321–1325 (2006)

    Article  PubMed  Google Scholar 

  7. Pamer, E. G. Immune responses to Listeria monocytogenes . Nature Rev. Immunol. 4, 812–823 (2004)

    Article  CAS  Google Scholar 

  8. Perrin, A. J., Jiang, X., Birmingham, C. L., So, N. S. & Brumell, J. H. Recognition of bacteria in the cytosol of Mammalian cells by the ubiquitin system. Curr. Biol. 14, 806–811 (2004)

    Article  CAS  PubMed  Google Scholar 

  9. Hamon, M., Bierne, H. & Cossart, P. Listeria monocytogenes: a multifaceted model. Nature Rev. Microbiol. 4, 423–434 (2006)

    Article  CAS  Google Scholar 

  10. Henry, R. et al. Cytolysin-dependent delay of vacuole maturation in macrophages infected with Listeria monocytogenes . Cell. Microbiol. 8, 107–119 (2006)

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jankowski, A., Scott, C. C. & Grinstein, S. Determinants of the phagosomal pH in neutrophils. J. Biol. Chem. 277, 6059–6066 (2002)

    Article  CAS  PubMed  Google Scholar 

  12. Hackam, D. J. et al. Regulation of phagosomal acidification. Differential targeting of Na+/H+ exchangers, Na+/K+-ATPases, and vacuolar-type H+-ATPases. J. Biol. Chem. 272, 29810–29820 (1997)

    Article  CAS  PubMed  Google Scholar 

  13. Gordon, A. H., Hart, P. D. & Young, M. R. Ammonia inhibits phagosome–lysosome fusion in macrophages. Nature 286, 79–80 (1980)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Yamamoto, A. et al. Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct. Funct. 23, 33–42 (1998)

    Article  CAS  PubMed  Google Scholar 

  15. Beauregard, K. E., Lee, K. D., Collier, R. J. & Swanson, J. A. pH-dependent perforation of macrophage phagosomes by listeriolysin O from Listeria monocytogenes . J. Exp. Med. 186, 1159–1163 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alberti-Segui, C., Goeden, K. R. & Higgins, D. E. Differential function of Listeria monocytogenes listeriolysin O and phospholipases C in vacuolar dissolution following cell-to-cell spread. Cell. Microbiol. 9, 179–195 (2007)

    Article  CAS  PubMed  Google Scholar 

  17. Birmingham, C. L. et al. Listeria monocytogenes evades killing by autophagy during colonization of host cells. Autophagy 3, 442–451 (2007)

    Article  CAS  PubMed  Google Scholar 

  18. Kuma, A. et al. The role of autophagy during the early neonatal starvation period. Nature 432, 1032–1036 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. de Chastellier, C. & Berche, P. Fate of Listeria monocytogenes in murine macrophages: evidence for simultaneous killing and survival of intracellular bacteria. Infect. Immun. 62, 543–553 (1994)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Brumell, J. H., Rosenberger, C. M., Gotto, G. T., Marcus, S. L. & Finlay, B. B. SifA permits survival and replication of Salmonella typhimurium in murine macrophages. Cell. Microbiol. 3, 75–84 (2001)

    Article  CAS  PubMed  Google Scholar 

  21. Kaniuk, N. A. et al. Ubiquitinated-protein aggregates form in pancreatic beta-cells during diabetes-induced oxidative stress and are regulated by autophagy. Diabetes 56, 930–939 (2007)

    Article  CAS  PubMed  Google Scholar 

  22. Bishop, D. K. & Hinrichs, D. J. Adoptive transfer of immunity to Listeria monocytogenes. The influence of in vitro stimulation on lymphocyte subset requirements. J. Immunol. 139, 2005–2009 (1987)

    CAS  PubMed  Google Scholar 

  23. Skoble, J., Portnoy, D. A. & Welch, M. D. Three regions within ActA promote Arp2/3 complex-mediated actin nucleation and Listeria monocytogenes motility. J. Cell Biol. 150, 527–538 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cheng, L. W. & Portnoy, D. A. Drosophila S2 cells: an alternative infection model for Listeria monocytogenes . Cell. Microbiol. 5, 875–885 (2003)

    Article  CAS  PubMed  Google Scholar 

  25. Jones, S. & Portnoy, D. A. Characterization of Listeria monocytogenes pathogenesis in a strain expressing perfringolysin O in place of listeriolysin O. Infect. Immun. 62, 5608–5613 (1994)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lauer, P., Chow, M. Y., Loessner, M. J., Portnoy, D. A. & Calendar, R. Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J. Bacteriol. 184, 4177–4186 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Camilli, A., Tilney, L. G. & Portnoy, D. A. Dual roles of plcA in Listeria monocytogenes pathogenesis. Mol. Microbiol. 8, 143–157 (1993)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Smith, G. A. et al. The two distinct phospholipases C of Listeria monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread. Infect. Immun. 63, 4231–4237 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Dramsi, S., Levi, S., Triller, A. & Cossart, P. Entry of Listeria monocytogenes into neurons occurs by cell-to-cell spread: an in vitro study. Infect. Immun. 66, 4461–4468 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nato, F. et al. Production and characterization of neutralizing and nonneutralizing monoclonal antibodies against listeriolysin O. Infect. Immun. 59, 4641–4646 (1991)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Campbell, R. E. et al. A monomeric red fluorescent protein. Proc. Natl Acad. Sci. USA 99, 7877–7882 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.H.B. holds an Investigators in Pathogenesis of Infectious Disease Award from the Burroughs Wellcome Fund and is the recipient of the Premier’s Research Excellence Award from the Ontario Ministry of Economic Development and Trade and the Boehringer Ingelheim (Canada) Young Investigator Award in Biological Sciences. Laboratory infrastructure was provided by a New Opportunities Fund from the Canadian Foundation for Innovation and the Ontario Innovation Trust. C.L.B. holds a Canada Graduate Scholarship from the Natural Sciences and Engineering Research Council of Canada. N.A.K. holds a CAG/CIHR/Axcan Pharma fellowship from the Canadian Association of Gastroenterology. B.E.S. is supported by Canadian Institutes of Health Research and McLaughlin Centre for Molecular Medicine MD/PhD studentships. We are grateful to E. R. Unanue for performing in vivo infections of mice and providing tissue sections and electron micrographs. We thank D. Brown, P. Cossart, J. Danska, E. Gouin, S. Grinstein, N. Jones, N. Mizushima, D. Portnoy, and T. Yoshimori for providing reagents and suggestions. We also thank M. Woodside, P. Paroutis and R. Temkin for assistance with microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Brumell.

Supplementary information

Supplementary Figures

The file contains Supplementary Figures 1-6 with Legends. (PDF 1226 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birmingham, C., Canadien, V., Kaniuk, N. et al. Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles. Nature 451, 350–354 (2008). https://doi.org/10.1038/nature06479

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06479

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing