Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reduction and selective oxo group silylation of the uranyl dication


Uranium occurs in the environment predominantly as the uranyl dication [UO2]2+. Its solubility renders this species a problematic contaminant1,2,3 which is, moreover, chemically extraordinarily robust owing to strongly covalent U–O bonds4. This feature manifests itself in the uranyl dication showing little propensity to partake in the many oxo group functionalizations and redox reactions typically seen with [CrO2]2+, [MoO2]2+ and other transition metal analogues5,6,7,8,9. As a result, only a few examples of [UO2]2+ with functionalized oxo groups are known. Similarly, it is only very recently that the isolation and characterization of the singly reduced, pentavalent uranyl cation [UO2]+ has been reported10,11,12. Here we show that placing the uranyl dication within a rigid and well-defined molecular framework while keeping the environment anaerobic allows simultaneous single-electron reduction and selective covalent bond formation at one of the two uranyl oxo groups. The product of this reaction is a pentavalent and monofunctionalized [O = U ... OR]+ cation that can be isolated in the presence of transition metal cations. This finding demonstrates that under appropriate reaction conditions, the uranyl oxo group will readily undergo radical reactions commonly associated only with transition metal oxo groups. We expect that this work might also prove useful in probing the chemistry of the related but highly radioactive plutonyl and neptunyl analogues found in nuclear waste.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Reductive silylation of the uranyl dication.
Figure 2: X-ray crystal structures of [UO(OSi(CH3)3)(thf)Fe2I2(L)] and [UO(OSi(CH3)3)(thf)Zn2I2(L)].

Accession codes

Primary accessions



  1. Amme, M., Wiss, T., Thiele, H., Boulet, P. & Lang, H. Uranium secondary phase formation during anoxic hydrothermal leaching processes of UO2 nuclear fuel. J. Nucl. Mater. 341, 209–223 (2005)

    CAS  ADS  Article  Google Scholar 

  2. Lovley, D. R., Phillips, E. J. P., Gorby, Y. A. & Landa, E. R. Microbial reduction of uranium. Nature 350, 413–416 (1991)

    CAS  ADS  Article  Google Scholar 

  3. Suzuki, Y., Kelly, S. D., Kemner, K. M. & Banfield, J. F. Radionuclide contamination: Nanometre-size products of uranium bioreduction. Nature 419, 134 (2002)

    CAS  ADS  Article  Google Scholar 

  4. Denning, R. G. Electronic structure and bonding in actinyl ions and their analogs. J. Phys. Chem. A 111, 4125–4143 (2007)

    CAS  Article  Google Scholar 

  5. Kühn, F. E., Santos, A. M. & Abrantes, M. Mononuclear organomolybdenum(vi) dioxo complexes: Synthesis, reactivity, and catalytic applications. Chem. Rev. 106, 2455–2475 (2006)

    Article  Google Scholar 

  6. Nam, W. High-valent iron(iv)-oxo complexes of heme and non-heme ligands in oxygenation reactions. Acc. Chem. Res. 40, 522–531 (2007)

    CAS  Article  Google Scholar 

  7. Jin, N., Ibrahim, M., Spiro, T. G. & Groves, J. T. Trans-dioxo manganese(v) porphyrins. J. Am. Chem. Soc. 129, 12416–12417 (2007)

    CAS  Article  Google Scholar 

  8. Limberg, C. The role of radicals in metal-assisted oxygenation reactions. Angew. Chem. Int. Edn Engl. 42, 5932–5954 (2003)

    CAS  Article  Google Scholar 

  9. Mayer, J. M. Hydrogen atom abstraction by metal–oxo complexes: Understanding the analogy with organic radical reactions. Acc. Chem. Res. 31, 441–450 (1998)

    CAS  Article  Google Scholar 

  10. Burdet, F., Pecaut, J. & Mazzanti, M. Isolation of a tetrameric cation-cation complex of pentavalent uranyl. J. Am. Chem. Soc. 128, 16512–16513 (2006)

    CAS  Article  Google Scholar 

  11. Natrajan, L., Burdet, F., Pecaut, J. & Mazzanti, M. Synthesis and structure of a stable pentavalent-uranyl coordination polymer. J. Am. Chem. Soc. 128, 7152–7153 (2006)

    CAS  Article  Google Scholar 

  12. Berthet, J. C., Siffredi, G., Thuery, P. & Ephritikhine, M. Easy access to stable pentavalent uranyl complexes. Chem. Commun.3184–3186 (2006)

  13. Burns, C. J. et al. A trigonal bipyramidal uranyl amido complex: Synthesis and structural characterization of Na(thf)2UO2{N(SiMe3)2}3 . Inorg. Chem. 39, 5464–5468 (2000)

    CAS  Article  Google Scholar 

  14. Sarsfield, M. J., Helliwell, M. & Raftery, J. Distorted equatorial coordination environments and weakening of U = O bonds in uranyl complexes containing NCN and NPN ligands. Inorg. Chem. 43, 3170–3179 (2004)

    CAS  Article  Google Scholar 

  15. Sarsfield, M. J. & Helliwell, M. Extending the chemistry of the uranyl ion: Lewis acid coordination to a U = O oxygen. J. Am. Chem. Soc. 126, 1036–1037 (2004)

    CAS  Article  Google Scholar 

  16. Kannan, S., Vaughn, A. E., Weis, E. M., Barnes, C. L. & Duval, P. B. Anhydrous photochemical uranyl(vi) reduction: Unprecedented retention of equatorial coordination accompanying reversible axial oxo/alkoxide exchange. J. Am. Chem. Soc. 128, 14024–14025 (2006)

    CAS  Article  Google Scholar 

  17. Arnold, P. L., Blake, A. J., Wilson, C. & Love, J. B. Uranyl complexation by a Schiff-base, polypyrrolic macrocycle. Inorg. Chem. 43, 8206–8208 (2004)

    CAS  Article  Google Scholar 

  18. Arnold, P. L., Patel, D., Blake, A. J., Wilson, C. & Love, J. B. Selective oxo functionalization of the uranyl ion with 3d metal cations. J. Am. Chem. Soc. 128, 9610–9611 (2006)

    CAS  Article  Google Scholar 

  19. Docrat, T. I. et al. X-ray absorption spectroscopy of tricarbonatodioxouranate(v), [UO2(CO3)3]5–, in aqueous solution. Inorg. Chem. 38, 1879–1882 (1999)

    CAS  Article  Google Scholar 

  20. Hay, P. J., Martin, R. L. & Schreckenbach, G. Theoretical studies of the properties and solution chemistry of AnO2 2+ and AnO2+ aquo complexes for An = U, Np, and Pu. J. Phys. Chem. A 104, 6259–6270 (2000)

    CAS  Article  Google Scholar 

  21. Wander, M. C. F., Kerisit, S., Rosso, K. M. & Schoonen, M. A. A. Kinetics of triscarbonato uranyl reduction by aqueous ferrous iron: A theoretical study. J. Phys. Chem. A 110, 9691–9701 (2006)

    CAS  Article  Google Scholar 

  22. Zi, G. et al. Preparation and reactions of base-free bis(1,2,4-tri-tert-butylcyclopentadienyl)uranium oxide, Cp'2UO. Organometallics 24, 4251–4264 (2005)

    CAS  Article  Google Scholar 

  23. Cotton, F. A., Marler, D. O. & Schwotzer, W. Dinuclear uranium alkoxides: preparation and structures of KU2(OCMe3)9, U2(OCMe3)9, and U2(OCHMe2)10, containing [U(iv),U(iv)], [U(iv),U(v)], and [U(v),U(v)], respectively. Inorg. Chem. 23, 4211–4215 (1984)

    CAS  Article  Google Scholar 

  24. Donahue, J. P., Goldsmith, C. R., Nadiminti, U. & Holm, R. H. Synthesis, structures, and reactivity of bis(dithiolene)molybdenum(iv,vi) complexes related to the active sites of molybdoenzymes. J. Am. Chem. Soc. 120, 12869–12881 (1998)

    CAS  Article  Google Scholar 

  25. Lorber, C., Donahue, J. P., Goddard, C. A., Nordlander, E. & Holm, R. H. Synthesis, structures, and oxo transfer reactivity of bis(dithiolene)tungsten(iv, vi) complexes related to the active sites of tungstoenzymes. J. Am. Chem. Soc. 120, 8102–8112 (1998)

    CAS  Article  Google Scholar 

  26. O'Grady, E. & Kaltsoyannis, N. On the inverse trans influence. Density functional studies of [MOX5] n (M = Pa, n = 2; M = U, n = 1; M = Np, n = 0; X = F, Cl or Br). J. Chem. Soc., Dalton Trans.1233–1239 (2002)

  27. Costes, J. P., Dahan, F., Dupuis, A. & Laurent, J. P. Nature of the magnetic interaction in the (Cu2+, Ln3+) pairs: An empirical approach based on the comparison between homologous (Cu2+, Ln3+) and (NiLS 2+, Ln3+) complexes. Chem. Eur. J. 4, 1616–1620 (1998)

    CAS  Article  Google Scholar 

  28. Castro-Rodriguez, I., Olsen, K., Gantzel, P. & Meyer, K. Uranium tris-aryloxide derivatives supported by triazacyclononane: engendering U(iii) center with a single pocket for reactivity. J. Am. Chem. Soc. 125, 4565–4571 (2003)

    CAS  Article  Google Scholar 

  29. Rosen, R. K., Andersen, R. A. & Edelstein, N. M. A bimetallic molecule with antiferromagnetic coupling between the uranium centres. J. Am. Chem. Soc. 112, 4588–4590 (1990)

    CAS  Article  Google Scholar 

  30. Reilly, S. D. & Neu, M. P. Pu(vi) hydrolysis: further evidence for a dimeric plutonyl hydroxide and contrasts with U(vi) chemistry. Inorg. Chem. 45, 1839–1846 (2006)

    CAS  Article  Google Scholar 

Download references


We thank the EPSRC (UK), the Royal Society, and the Universities of Edinburgh and Nottingham for support, J. Sanchez-Benitez and P. Anderson of Edinburgh University for help with magnetic susceptibility measurements and chloride analysis respectively, R. Edge and the EPSRC EPR service at the University of Manchester, and D. Leigh for his advice.

Author Contributions D.P. synthesized and characterized the compounds, and solved the crystal structure data. C.W. mounted the crystals, collected the single-crystal X-ray crystallographic data, modelled the disorder components in the structures, and checked the final structure solutions. P.L.A. and J.B.L. generated and managed the project, helped characterize the complexes, analysed the data and wrote the manuscript.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Polly L. Arnold or Jason B. Love.

Additional information

X-ray crystallographic coordinates for 3 and 5 have been deposited at the Cambridge Crystallographic Database, numbers 649987 and 649988 respectively.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Table S1, Supplementary Figures S1-S3 with Legends and additional references. The document describes general experimental procedures, synthetic and characterisation data for compounds 1 to 6, and additional reactivity studies. The Supplementary Figures show FTIR spectroscopic data (1), selected variable temperature magnetic susceptibility data (3), and preliminary EPR data (1) for complexes 1 to 6. Crystallographic details for 3 and 5. (PDF 865 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Arnold, P., Patel, D., Wilson, C. et al. Reduction and selective oxo group silylation of the uranyl dication. Nature 451, 315–317 (2008).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing