Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Magnetic monopoles in spin ice


Electrically charged particles, such as the electron, are ubiquitous. In contrast, no elementary particles with a net magnetic charge have ever been observed, despite intensive and prolonged searches (see ref. 1 for example). We pursue an alternative strategy, namely that of realizing them not as elementary but rather as emergent particles—that is, as manifestations of the correlations present in a strongly interacting many-body system. The most prominent examples of emergent quasiparticles are the ones with fractional electric charge e/3 in quantum Hall physics2. Here we propose that magnetic monopoles emerge in a class of exotic magnets known collectively as spin ice3,4,5: the dipole moment of the underlying electronic degrees of freedom fractionalises into monopoles. This would account for a mysterious phase transition observed experimentally in spin ice in a magnetic field6,7, which is a liquid–gas transition of the magnetic monopoles. These monopoles can also be detected by other means, for example, in an experiment modelled after the Stanford magnetic monopole search8.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The pyrochlore and diamond lattices.
Figure 2: Mapping from dipoles to dumbbells.
Figure 3: Monopole interaction.
Figure 4: Phase diagram of spin ice in a [111] field.


  1. Milton, K. A. Theoretical and experimental status of magnetic monopoles. Rep. Prog. Phys. 69, 1637–1712 (2006)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  2. Laughlin, R. B. Nobel lecture: Fractional quantization. Rev. Mod. Phys. 71, 863–874 (1999)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  3. Harris, M. J., Bramwell, S. T., McMorrow, D. F., Zeiske, T. & Godfrey, K. W. Geometrical frustration in the ferromagnetic pyrochlore Ho2Ti2O7 . Phys. Rev. Lett. 79, 2554–2557 (1997)

    ADS  CAS  Article  Google Scholar 

  4. Bramwell, S. T. & Gingras, M. J. P. Spin ice state in frustrated magnetic pyrochlore materials. Science 294, 1495–1501 (2001)

    ADS  CAS  Article  Google Scholar 

  5. Ramirez, A. P., Hayashi, A., Cava, R. J., Siddharthan, R. B. & Shastry, S. Zero-point entropy in ‘spin ice’. Nature 399, 333–336 (1999)

    ADS  CAS  Article  Google Scholar 

  6. Aoki, H., Sakakibara, T., Matsuhira, K. & Hiroi, Z. Magnetocaloric effect study on the pyrochlore spin ice compound Dy2Ti2O7 in a [111] magnetic field. J. Phys. Soc. Jpn 73, 2851–2856 (2004)

    ADS  CAS  Article  Google Scholar 

  7. Higashinaka, R., Fukazawa, H., Deguchi, K. & Maeno, Y. Low temperature specific heat of Dy2Ti2O7 in the kagome ice state. J. Phys. Soc. Jpn 73, 2845–2850 (2004)

    ADS  CAS  Article  Google Scholar 

  8. Cabrera, B. First results from a superconductive detector for moving magnetic monopoles. Phys. Rev. Lett. 48, 1378–1381 (1982)

    ADS  CAS  Article  Google Scholar 

  9. Siddharthan, R. et al. Ising pyrochlore magnets: low-temperature properties, ice rules, and beyond. Phys. Rev. Lett. 83, 1854–1857 (1999)

    ADS  CAS  Article  Google Scholar 

  10. Ruff, J. P. C., Melko, R. G. & Gingras, M. J. P. Finite-temperature transitions in dipolar spin ice in a large magnetic field. Phys. Rev. Lett. 95, 097202 (2005)

    ADS  Article  Google Scholar 

  11. Huse, D. A., Krauth, W., Moessner, R. & Sondhi, S. L. Coulomb and liquid dimer models in three dimensions. Phys. Rev. Lett. 91, 167004 (2003)

    ADS  Article  Google Scholar 

  12. Hermele, M., Fisher, M. P. A. & Balents, L. Pyrochlore photons: The U(1) spin liquid in a S = 1/2 three-dimensional frustrated magnet. Phys. Rev. B 69, 064404 (2004)

    ADS  Article  Google Scholar 

  13. Henley, C. L. Power-law spin correlations in pyrochlore antiferromagnets. Phys. Rev. B 71, 014424 (2005)

    ADS  Article  Google Scholar 

  14. Fulde, P., Penc, K. & Shannon, N. Fractional charges in pyrochlore lattices. Ann. Phys. 11, 892–900 (2002)

    CAS  Article  Google Scholar 

  15. Levin, M. & Wen, X. G. Quantum ether: Photons and electrons from a rotor model. Phys. Rev. B 73, 035122 (2006)

    ADS  Article  Google Scholar 

  16. Nagle, J. F. Theory of the dielectric constant of ice. Chem. Phys. 43, 317–328 (1979)

    CAS  Article  Google Scholar 

  17. Jackson, J. D. Classical Electrodynamics 251–260, Ch. 6.12–6.13 (Wiley, New York, 1975)

    MATH  Google Scholar 

  18. Saitoh, E., Miyajima, H., Yamaoka, T. & Tatara, G. Current-induced resonance and mass determination of a single magnetic domain wall. Nature 432, 203–206 (2004)

    ADS  CAS  Article  Google Scholar 

  19. Dirac, P. A. M. Quantised singularities in the electromagnetic field. Proc. R. Soc. A 133, 60–72 (1931)

    ADS  Article  Google Scholar 

  20. Rajaraman, R. Fractional charge. Preprint at 〈〉 (2001)

  21. Kobelev, V., Kolomeisky, A. B. & Fisher, M. E. Lattice models of ionic systems. J. Chem. Phys. 116, 7589–7598 (2002)

    ADS  CAS  Article  Google Scholar 

  22. Heilmann, O. J. & Lieb, E. H. Theory of monomer-dimer systems. Commun. Math. Phys. 25, 190–232 (1972)

    ADS  MathSciNet  Article  Google Scholar 

  23. Isakov, S. V., Raman, K. S., Moessner, R. & Sondhi, S. L. Magnetization curve of spin ice in a [111] magnetic field. Phys. Rev. B 70, 104418 (2004)

    ADS  Article  Google Scholar 

  24. Fang, Z. et al. The anomalous Hall effect and magnetic monopoles in momentum space. Science 302, 92–95 (2003)

    ADS  CAS  Article  Google Scholar 

  25. Kitaev, A. Fault tolerant quantum computing. Ann. Phys. 303, 2–30 (2003)

    ADS  CAS  Article  Google Scholar 

Download references


We thank S. Bramwell, J. Chalker, C. Chamon and S. Kivelson (especially for pointing out ref. 8) for discussions. This work is supported in part by EPSRC (CC), and NSF (SLS). We also thank A. Canossa for support with the graphics.

Author Contributions All authors contributed equally to the manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to C. Castelnovo.

Supplementary information

Supplementary Information

The file contains Supplementary Notes with Supplementary Figures 1-2 (PDF 136 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Castelnovo, C., Moessner, R. & Sondhi, S. Magnetic monopoles in spin ice. Nature 451, 42–45 (2008).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing