Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of a tyrosyl-tRNA synthetase splicing factor bound to a group I intron RNA

Abstract

The ‘RNA world’ hypothesis holds that during evolution the structural and enzymatic functions initially served by RNA were assumed by proteins, leading to the latter’s domination of biological catalysis. This progression can still be seen in modern biology, where ribozymes, such as the ribosome and RNase P, have evolved into protein-dependent RNA catalysts (‘RNPzymes’). Similarly, group I introns use RNA-catalysed splicing reactions, but many function as RNPzymes bound to proteins that stabilize their catalytically active RNA structure1,2. One such protein, the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (TyrRS; CYT-18), is bifunctional and both aminoacylates mitochondrial tRNATyr and promotes the splicing of mitochondrial group I introns3. Here we determine a 4.5-Å co-crystal structure of the Twort orf142-I2 group I intron ribozyme bound to splicing-active, carboxy-terminally truncated CYT-18. The structure shows that the group I intron binds across the two subunits of the homodimeric protein with a newly evolved RNA-binding surface distinct from that which binds tRNATyr. This RNA binding surface provides an extended scaffold for the phosphodiester backbone of the conserved catalytic core of the intron RNA, allowing the protein to promote the splicing of a wide variety of group I introns. The group I intron-binding surface includes three small insertions and additional structural adaptations relative to non-splicing bacterial TyrRSs, indicating a multistep adaptation for splicing function. The co-crystal structure provides insight into how CYT-18 promotes group I intron splicing, how it evolved to have this function, and how proteins could have incrementally replaced RNA structures during the transition from an RNA world to an RNP world.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Co-crystal structure of the Twort orf 142-I2 group I intron ribozyme bound to CYT-18/Δ424–669.
Figure 2: CYT-18 binding to the P4–P6 domain.
Figure 3: CYT-18-specific insertions bridge the P4–P6 and P3–P9 domains.
Figure 4: CYT-18 and the P5abc peripheral RNA structure found in some group I introns interact similarly with the P4–P6 domain.

Similar content being viewed by others

References

  1. Lambowitz, A. M., Caprara, M. G., Zimmerly, S. & Perlman, P. S. in The RNA World, 2nd edn (eds Gesteland, R.F., Cech, T.R. & Atkins, J.F.) 451–485 (Cold Spring Harbor Press, New York, 1999)

    Google Scholar 

  2. Lambowitz, A. M. & Perlman, P. S. Involvement of aminoacyl-tRNA synthetases and other proteins in group I and group II intron splicing. Trends Biochem. Sci. 15, 440–444 (1990)

    Article  Google Scholar 

  3. Akins, R. A. & Lambowitz, A. M. A protein required for splicing group I introns in Neurospora mitochondria is mitochondrial tyrosyl-tRNA synthetase or a derivative thereof. Cell 50, 331–345 (1987)

    Article  CAS  Google Scholar 

  4. Michel, F. & Westhof, E. Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J. Mol. Biol. 216, 585–610 (1990)

    Article  CAS  Google Scholar 

  5. Adams, P. L., Stahley, M. R., Kosek, A. B., Wang, J. & Strobel, S. A. Crystal structure of a self-splicing group I intron with both exons. Nature 430, 45–50 (2004)

    Article  ADS  CAS  Google Scholar 

  6. Guo, F., Gooding, A. R. & Cech, T. R. Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site. Mol. Cell 16, 351–362 (2004)

    CAS  PubMed  Google Scholar 

  7. Golden, B. L., Kim, H. & Chase, E. Crystal structure of a phage Twort group I ribozyme–product complex. Nat. Struct. Mol. Biol. 12, 82–89 (2005)

    Article  CAS  Google Scholar 

  8. Mohr, G., Zhang, A., Gianelos, J. A., Belfort, M. & Lambowitz, A. M. The Neurospora CYT-18 protein suppresses defects in the phage T4 td intron by stabilizing the catalytically active structure of the intron core. Cell 69, 483–494 (1992)

    Article  CAS  Google Scholar 

  9. Guo, Q. & Lambowitz, A. M. A tyrosyl-tRNA synthetase binds specifically to the group I intron catalytic core. Genes Dev. 6, 1357–1372 (1992)

    Article  CAS  Google Scholar 

  10. Mohr, G., Caprara, M. G., Guo, Q. & Lambowitz, A. M. A tyrosyl-tRNA synthetase can function similarly to an RNA structure in the Tetrahymena ribozyme. Nature 370, 147–150 (1994)

    Article  ADS  CAS  Google Scholar 

  11. Caprara, M. G., Lehnert, V., Lambowitz, A. M. & Westhof, E. A tyrosyl-tRNA synthetase recognizes a conserved tRNA-like structural motif in the group I intron catalytic core. Cell 87, 1135–1145 (1996)

    Article  CAS  Google Scholar 

  12. Paukstelis, P. J. et al. A tyrosyl-tRNA synthetase adapted to function in group I intron splicing by acquiring a new RNA binding surface. Mol. Cell 17, 417–428 (2005)

    Article  CAS  Google Scholar 

  13. Yaremchuk, A., Kriklivyi, I., Tukalo, M. & Cusack, S. Class I tyrosyl-tRNA synthetase has a class II mode of cognate tRNA recognition. EMBO J. 21, 3829–3840 (2002)

    Article  CAS  Google Scholar 

  14. Kämper, U., Kück, U., Cherniack, A. D. & Lambowitz, A. M. The mitochondrial tyrosyl-tRNA synthetase of Podospora anserina is a bifunctional enzyme active in protein synthesis and RNA splicing. Mol. Cell. Biol. 12, 499–511 (1992)

    Article  Google Scholar 

  15. Kleinjung, J. & Fraternali, F. POPSCOMP: an automated interaction analysis of biomolecular complexes. Nucleic Acids Res. 33, W342–6 (2005)

    Article  CAS  Google Scholar 

  16. Chen, X., Gutell, R. R. & Lambowitz, A. M. Function of tyrosyl-tRNA synthetase in splicing group I introns: an induced-fit model for binding to the P4–P6 domain based on analysis of mutations at the junction of the P4–P6 stacked helices. J. Mol. Biol. 301, 265–283 (2000)

    Article  CAS  Google Scholar 

  17. Caprara, M. G., Myers, C. A. & Lambowitz, A. M. Interaction of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) with the group I intron P4–P6 domain. Thermodynamic analysis and the role of metal ions. J. Mol. Biol. 308, 165–190 (2001)

    Article  CAS  Google Scholar 

  18. Caprara, M. G., Mohr, G. & Lambowitz, A. M. A tyrosyl-tRNA synthetase protein induces tertiary folding of the group I intron catalytic core. J. Mol. Biol. 257, 512–531 (1996)

    Article  CAS  Google Scholar 

  19. Webb, A. E., Rose, M. A., Westhof, E. & Weeks, K. M. Protein-dependent transition states for ribonucleoprotein assembly. J. Mol. Biol. 309, 1087–1100 (2001)

    Article  CAS  Google Scholar 

  20. Myers, C. A. et al. A tyrosyl-tRNA synthetase suppresses structural defects in the two major helical domains of the group I intron catalytic core. J. Mol. Biol. 262, 87–104 (1996)

    Article  CAS  Google Scholar 

  21. Waldsich, C., Grossberger, R. & Schroeder, R. RNA chaperone StpA loosens interactions of the tertiary structure in the td group I intron in vivo . Genes Dev. 16, 2300–2312 (2002)

    Article  CAS  Google Scholar 

  22. Weeks, K. M. & Cech, T. R. Assembly of a ribonucleoprotein catalyst by tertiary structure capture. Science 271, 345–348 (1996)

    Article  ADS  CAS  Google Scholar 

  23. Cate, J. H. et al. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273, 1678–1685 (1996)

    Article  ADS  CAS  Google Scholar 

  24. Chen, X., Mohr, G. & Lambowitz, A. M. The Neurospora crassa CYT-18 protein C-terminal RNA-binding domain helps stabilize interdomain tertiary interactions in group I introns. RNA 10, 634–644 (2004)

    Article  CAS  Google Scholar 

  25. Mohr, G., Rennard, R., Cherniack, A. D., Stryker, J. & Lambowitz, A. M. Function of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase in RNA splicing. Role of the idiosyncratic N-terminal extension and different modes of interaction with different group I introns. J. Mol. Biol. 307, 75–92 (2001)

    Article  CAS  Google Scholar 

  26. Galagan, J. E., Henn, M. R., Ma, L. J., Cuomo, C. A. & Birren, B. Genomics of the fungal kingdom: insights into eukaryotic biology. Genome Res. 15, 1620–1631 (2005)

    Article  CAS  Google Scholar 

  27. Selker, E. U. Premeiotic instability of repeated sequences in Neurospora crassa . Annu. Rev. Genet. 24, 579–613 (1990)

    Article  CAS  Google Scholar 

  28. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  29. McCoy, A. J., Grosse-Kunstleve, R. W., Storoni, L. C. & Read, R. J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D Biol. Crystallogr. 61, 458–464 (2005)

    Article  Google Scholar 

  30. Brünger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998)

    Article  Google Scholar 

  31. Landthaler, M. & Shub, D. A. Unexpected abundance of self-splicing introns in the genome of bacteriophage Twort: introns in multiple genes, a single gene with three introns, and exon skipping by group I ribozymes. Proc. Natl Acad. Sci. USA 96, 7005–7010 (1999)

    Article  ADS  CAS  Google Scholar 

  32. DeLaBarre, B. & Brünger, A. T. Considerations for the refinement of low-resolution crystal structures. Acta Crystallogr. D Biol. Crystallogr. 62, 923–932 (2006)

    Article  Google Scholar 

  33. Vriend, G. WHAT IF: A molecular modeling and drug design program. J. Mol. Graph. 8, 52–56 (1990)

    Article  CAS  Google Scholar 

  34. McRee, D. E. XtalView/Xfit—a versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 125, 156–165 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Correll, M. Hermodson, R. Russell and J. Tesmer for comments on the manuscript; T. Cech for discussions; the staff of SER-CAT and GM/CA-CAT, N. Sanishvili, D. Khare and M. Oldham for assistance with crystallographic data collection; and H. Kim for performing kinetic assays. Data were collected at GM/CA-CAT and SER-CAT beamlines at the Advanced Photon Source, Argonne National Laboratory. This work was supported by a grant from the National Institutes of Health to A.M.L.

Author Contributions P.J.P. and E.C. prepared materials for crystallization. E.C. crystallized the CYT-18–Twort RNA complex. J-H.C. collected and processed diffraction data. P.J.P. solved the structure. P.J.P., B.L.G. and A.M.L. interpreted data and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alan M. Lambowitz or Barbara L. Golden.

Supplementary information

Supplementary Information

This file contains Supplementary Notes on structure validation, Supplementary Tables 1-3, Supplementary Figures 1-11 with Legends, and additional references. (PDF 2344 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paukstelis, P., Chen, JH., Chase, E. et al. Structure of a tyrosyl-tRNA synthetase splicing factor bound to a group I intron RNA. Nature 451, 94–97 (2008). https://doi.org/10.1038/nature06413

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06413

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing