Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A hierarchy of timescales in protein dynamics is linked to enzyme catalysis


The synergy between structure and dynamics is essential to the function of biological macromolecules. Thermally driven dynamics on different timescales have been experimentally observed or simulated, and a direct link between micro- to milli-second domain motions and enzymatic function has been established1,2,3,4. However, very little is understood about the connection of these functionally relevant, collective movements with local atomic fluctuations, which are much faster. Here we show that pico- to nano-second timescale atomic fluctuations in hinge regions of adenylate kinase facilitate the large-scale, slower lid motions that produce a catalytically competent state. The fast, local mobilities differ between a mesophilic and hyperthermophilic adenylate kinase, but are strikingly similar at temperatures at which enzymatic activity and free energy of folding are matched. The connection between different timescales and the corresponding amplitudes of motions in adenylate kinase and their linkage to catalytic function is likely to be a general characteristic of protein energy landscapes.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Comparison of thermoAdk and mesoAdk flexibility.
Figure 2: Temperature dependence of thermoAdk order parameters.
Figure 3: Temperature dependence of MD order parameters and comparison with experimental S2.
Figure 4: Linkage of motional timescales and characterization of hinges.


  1. 1

    Wolf-Watz, M. et al. Linkage between dynamics and catalysis in a thermophilic-mesophilic enzyme pair. Nature Struct. Mol. Biol. 11, 945–949 (2004)

    CAS  Article  Google Scholar 

  2. 2

    Boehr, D. D., Dyson, H. J. & Wright, P. E. An NMR perspective on enzyme dynamics. Chem. Rev. 106, 3055–3079 (2006)

    CAS  Article  PubMed  Google Scholar 

  3. 3

    Austin, R. H., Beeson, K. W., Eisenstein, L., Frauenfelder, H. & Gunsalus, I. C. Dynamics of ligand binding to myoglobin. Biochemistry 14, 5355–5373 (1975)

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Henzler-Wildman, K. et al. Intrinsic motions along an enzymatic reaction trajectory. Nature advanced online publication. doi: 10.1030/nature06410 (18 November 2007)

  5. 5

    Vitkup, D., Ringe, D., Petsko, G. A. & Karplus, M. Solvent mobility and the protein 'glass' transition. Nature Struct. Biol. 7, 34–38 (2000)

    CAS  Article  PubMed  Google Scholar 

  6. 6

    Fenimore, P. W., Frauenfelder, H., McMahon, B. H. & Parak, F. G. Slaving: Solvent fluctuations dominate protein dynamics and functions. Proc. Natl Acad. Sci. USA 99, 16047–16051 (2002)

    ADS  CAS  Article  PubMed  Google Scholar 

  7. 7

    Nagel, Z. D. & Klinman, J. P. Tunneling and dynamics in enzymatic hydride transfer. Chem. Rev. 106, 3095–3118 (2006)

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Hollien, J. & Marqusee, S. Structural distribution of stability in a thermophilic enzyme. Proc. Natl Acad. Sci. USA 96, 13674–13678 (1999)

    ADS  CAS  Article  PubMed  Google Scholar 

  9. 9

    Butterwick, J. A. et al. Multiple time scale backbone dynamics of homologous thermophilic and mesophilic ribonuclease HI enzymes. J. Mol. Biol. 339, 855–871 (2004)

    CAS  Article  PubMed  Google Scholar 

  10. 10

    Cole, R. & Loria, J. P. FAST-Modelfree: A program for rapid automated analysis of solution NMR spin-relaxation data. J. Biomol. NMR 26, 203–213 (2003)

    CAS  Article  PubMed  Google Scholar 

  11. 11

    Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559 (1982)

    CAS  Article  Google Scholar 

  12. 12

    Mandel, A. M., Akke, M. & Palmer, A. G. Backbone dynamics of Escherichia coli ribonuclease H—correlations with structure and function in an active enzyme. J. Mol. Biol. 246, 144–163 (1995)

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Monnot, M. et al. Circular-dichroism investigation of Escherichia coli adenylate kinase. J. Biol. Chem. 262, 2502–2506 (1987)

    CAS  PubMed  Google Scholar 

  14. 14

    Mandel, A. M., Akke, M. & Palmer, A. G. Dynamics of ribonuclease H: Temperature dependence of motions on multiple time scales. Biochemistry 35, 16009–16023 (1996)

    CAS  Article  PubMed  Google Scholar 

  15. 15

    Petsko, G. A. Structural basis of thermostability in hyperthermophilic proteins, or “there's more than one way to skin a cat”. Methods Enzymol. 334, 469–478 (2001)

    CAS  Article  PubMed  Google Scholar 

  16. 16

    Bae, E. & Phillips, G. N. Roles of static and dynamic domains in stability and catalysis of adenylate kinase. Proc. Natl Acad. Sci. USA 103, 2132–2137 (2006)

    ADS  CAS  Article  PubMed  Google Scholar 

  17. 17

    Zhang, F. L. & Bruschweiler, R. Contact model for the prediction of NMR 15N-1H order parameters in globular proteins. J. Am. Chem. Soc. 124, 12654–12655 (2002)

    CAS  Article  PubMed  Google Scholar 

  18. 18

    Jacobs, D. J., Rader, A. J., Kuhn, L. A. & Thorpe, M. F. Protein flexibility predictions using graph theory. Proteins 44, 150–165 (2001)

    CAS  Article  PubMed  Google Scholar 

  19. 19

    Halle, B. Flexibility and packing in proteins. Proc. Natl Acad. Sci. USA 99, 1274–1279 (2002)

    ADS  CAS  Article  PubMed  Google Scholar 

  20. 20

    Maragakis, P. & Karplus, M. Large amplitude conformational change in proteins explored with a plastic network model: Adenylate kinase. J. Mol. Biol. 352, 807–822 (2005)

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Clore, G. M. & Schweiters, C. D. Concordance of residual dipolar coupling, backbone order parameters and crystallographic B-factors for a small α/β protein: A unified picture of high probability, fast atomic motions in proteins. J. Mol. Biol. 355, 879–886 (2006)

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Lou, H. F. & Cukier, R. I. Molecular dynamics of apo-adenylate kinase: A principal component analysis. J. Phys. Chem. B 110, 12796–12808 (2006)

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Prompers, J. J. & Bruschweiler, R. Thermodynamic interpretation of NMR relaxation parameters in proteins in the presence of motional correlations. J. Phys. Chem. B 104, 11416–11424 (2000)

    CAS  Article  Google Scholar 

  24. 24

    Temiz, N. A., Meirovitch, E. & Bahar, I. Escherichia coli adenylate kinase dynamics: Comparison of elastic network model modes with mode-coupling 15N-NMR relaxation data. Proteins 57, 468–480 (2004)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25

    Miyashita, O., Onuchic, J. N. & Wolynes, P. G. Nonlinear elasticity, proteinquakes, and the energy landscapes of functional transitions in proteins. Proc. Natl Acad. Sci. USA 100, 12570–12575 (2003)

    ADS  CAS  Article  PubMed  Google Scholar 

  26. 26

    Karplus, M. & Mccammon, J. A. The internal dynamics of globular-proteins. CRC Crit. Rev. Biochem. 9, 293–349 (1981)

    CAS  Article  PubMed  Google Scholar 

  27. 27

    Brooks, B. R. et al. CHARMM - a program for macromolecular energy, minimization, and dynamics calculations. J. Comp. Chem. 4, 187–217 (1983)

    CAS  Article  Google Scholar 

  28. 28

    Chenna, R. et al. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31, 3497–3500 (2003)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29

    Koradi, R., Billeter, M. & Wuthrich, K. MOLMOL: A program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55 29–32 (1996)

    CAS  Article  PubMed  Google Scholar 

  30. 30

    Karplus, M. & Kushick, J. N. Method for Estimating the Configurational Entropy of Macromolecules. Macromolecules 14, 325–332 (1981)

    ADS  CAS  Article  Google Scholar 

  31. 31

    Lee, A. L. & Wand, A. J. Assessing potential bias in the determination of rotational correlation times of proteins by NMR relaxation. J. Biomol. NMR 13, 101–112 (1999)

    CAS  Article  PubMed  Google Scholar 

  32. 32

    Buck, M., Bouguet-Bonnet, S., Pastor, R. W. & MacKerell, A. D. Importance of the CMAP correction to the CHARMM22 protein force field: Dynamics of hen lysozyme. Biophys. J. 90, L36–L38 (2006)

    CAS  Article  PubMed  Google Scholar 

  33. 33

    Shapiro, Y. E. et al. Domain flexibility in ligand-free and inhibitor-bound Escherichia coli adenylate kinase based on a mode-coupling analysis of N-15 spin relaxation. Biochemistry 41, 6271–6281 (2002)

    CAS  Article  PubMed  Google Scholar 

  34. 34

    Tugarinov, V., Shapiro, Y. E., Liang, Z. C., Freed, J. H. & Meirovitch, E. A novel view of domain flexibility in E. coli adenylate kinase based on structural mode-coupling 15N NMR relaxation. J. Mol. Biol. 315, 155–170 (2002)

    CAS  Article  PubMed  Google Scholar 

  35. 35

    Hall, J. B. & Fushman, D. Characterization of the overall and local dynamics of a protein with intermediate rotational anisotropy: Differentiating between conformational exchange and anisotropic diffusion in the B3 domain of protein G. J. Biomol. NMR 27, 261–275 (2003)

    CAS  Article  PubMed  Google Scholar 

  36. 36

    Bernado, P., de la Torre, J. G. & Pons, M. Interpretation of 15N NMR relaxation data of globular proteins using hydrodynamic calculations with HYDRONMR. J. Biomol. NMR 23, 139–150 (2002)

    CAS  Article  PubMed  Google Scholar 

  37. 37

    de la Torre, J. G., Huertas, M. L. & Carrasco, B. HYDRONMR: Prediction of NMR relaxation of globular proteins from atomic-level structures and hydrodynamic calculations. J. Magn. Reson. 147, 138–146 (2000)

    ADS  Article  Google Scholar 

  38. 38

    Evenas, J., Forsen, S., Malmendal, A. & Akke, M. Backbone dynamics and energetics of a calmodulin domain mutant exchanging between closed and open conformations. J. Mol. Biol. 289, 603–617 (1999)

    CAS  Article  PubMed  Google Scholar 

  39. 39

    Seewald, M. J. et al. The role of backbone conformational heat capacity in protein stability: Temperature dependent dynamics of the B1 domain of Streptococcal protein G. Protein Sci. 9, 1177–1193 (2000)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40

    Spyracopoulos, L. et al. Temperature dependence of dynamics and thermodynamics of the regulatory domain of human cardiac troponin C. Biochemistry 40, 12541–12551 (2001)

    CAS  Article  PubMed  Google Scholar 

  41. 41

    Zhuravleva, A. V. et al. Gated electron transfers and electron pathways in azurin: A NMR dynamic study at multiple fields and temperatures. J. Mol. Biol. 342, 1599–1611 (2004)

    CAS  Article  PubMed  Google Scholar 

  42. 42

    Chang, S. L. & Tjandra, N. Temperature dependence of protein backbone motion from carbonyl 13C and amide 15N NMR relaxation. J. Magn. Reson. 174, 43–53 (2005)

    ADS  CAS  Article  PubMed  Google Scholar 

  43. 43

    Wang, T. Z., Cai, S. & Zuiderweg, E. R. P. Temperature dependence of anisotropic protein backbone dynamics. J. Am. Chem. Soc. 125, 8639–8643 (2003)

    CAS  Article  Google Scholar 

  44. 44

    Vugmeyster, L., Raleigh, D. P., Palmer, A. G. & Vugmeister, B. E. Beyond the decoupling approximation in the model free approach for the interpretation of NMR relaxation of macromolecules in solution. J. Am. Chem. Soc. 125, 8400–8404 (2003)

    CAS  Article  PubMed  Google Scholar 

  45. 45

    Bracken, C., Carr, P. A., Cavanagh, J. & Palmer, A. G. Temperature dependence of intramolecular dynamics of the basic leucine zipper of GCN4: Implications for the entropy of association with DNA. J. Mol. Biol. 285, 2133–2146 (1999)

    CAS  Article  PubMed  Google Scholar 

  46. 46

    Zhang, Q., Sun, X. Y., Watt, E. D. & Al-Hashimi, H. M. Resolving the motional modes that code for RNA adaptation. Science 311, 653–656 (2006)

    ADS  CAS  Article  PubMed  Google Scholar 

  47. 47

    Hayward, S. & Lee, R. A. Improvements in the analysis of domain motions in proteins from conformational change: DynDom version 1.50. J. Mol. Graph. Model. 21, 181–183 (2002)

    CAS  Article  Google Scholar 

Download references


We thank L. Kay for providing pulse programs. We are grateful to K. O. Stetter for providing DNA isolated from Aquifex aeolicus and the Advanced Biomedical Computing Center for CPU hours. This work was supported by NIH grants (D.K. and K.A.H.-W.), a DOE grant (D.K.) and a fellowship from the American Heart Association (M.L.). The research at Harvard was supported in part by a grant from NIH to M.K.

Author Contributions K.A.H.-W. and M.L. contributed equally to this work. K.A.H.-W. performed the NMR experiments with supervision from D.K., and M.L. carried out the computational analysis with supervision from M.K. and D.K. All authors discussed the results and interpretation. D.K. and K.A.H.-W. wrote the manuscript.

Author information



Corresponding author

Correspondence to Dorothee Kern.

Supplementary information

Supplementary Information

The file contains Supplementary Discussion with additional references, Supplementary Tables S1-S4 and Supplementary Figures S1-S13 with Legends. (PDF 3255 kb)

Supplementary Figure S11

The file contains Supplementary Figure S11 at higher resolution for readability. (PDF 640 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Henzler-Wildman, K., Lei, M., Thai, V. et al. A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 450, 913–916 (2007).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing