Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The molecular architecture of the nuclear pore complex

Abstract

Nuclear pore complexes (NPCs) are proteinaceous assemblies of approximately 50 MDa that selectively transport cargoes across the nuclear envelope. To determine the molecular architecture of the yeast NPC, we collected a diverse set of biophysical and proteomic data, and developed a method for using these data to localize the NPC’s 456 constituent proteins (see the accompanying paper). Our structure reveals that half of the NPC is made up of a core scaffold, which is structurally analogous to vesicle-coating complexes. This scaffold forms an interlaced network that coats the entire curved surface of the nuclear envelope membrane within which the NPC is embedded. The selective barrier for transport is formed by large numbers of proteins with disordered regions that line the inner face of the scaffold. The NPC consists of only a few structural modules that resemble each other in terms of the configuration of their homologous constituents, the most striking of these being a 16-fold repetition of ‘columns’. These findings provide clues to the evolutionary origins of the NPC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Architectural overview of the NPC.
Figure 2: Localization of major substructures and their component nucleoporins in the NPC.
Figure 3: The core scaffold as a membrane-coating complex.
Figure 4: Distribution of the disordered FG-repeat regions in the NPC.
Figure 5: Modular duplication in the NPC.

Similar content being viewed by others

References

  1. Lim, R. Y. & Fahrenkrog, B. The nuclear pore complex up close. Curr. Opin. Cell Biol. 18, 342–347 (2006)

    Article  CAS  PubMed  Google Scholar 

  2. Macara, I. G. Transport into and out of the nucleus. Microbiol. Mol. Biol. Rev. 65, 570–594 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Weis, K. Nucleocytoplasmic transport: cargo trafficking across the border. Curr. Opin. Cell Biol. 14, 328–335 (2002)

    Article  CAS  PubMed  Google Scholar 

  4. Hetzer, M., Walther, T. C. & Mattaj, I. W. Pushing the envelope: Structure, function, and dynamics of the nuclear periphery. Annu. Rev. Cell Dev. Biol. 21, 347–380 (2005)

    Article  CAS  PubMed  Google Scholar 

  5. Tran, E. J. & Wente, S. R. Dynamic nuclear pore complexes: life on the edge. Cell 125, 1041–1053 (2006)

    Article  CAS  PubMed  Google Scholar 

  6. Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148, 635–651 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cronshaw, J. M., Krutchinsky, A. N., Zhang, W., Chait, B. T. & Matunis, M. J. Proteomic analysis of the mammalian nuclear pore complex. J. Cell Biol. 158, 915–927 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Akey, C. W. & Radermacher, M. Architecture of the Xenopus nuclear pore complex revealed by three-dimensional cryo-electron microscopy. J. Cell Biol. 122, 1–19 (1993)

    Article  CAS  PubMed  Google Scholar 

  9. Beck, M. et al. Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306, 1387–1390 (2004)

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Hinshaw, J. E., Carragher, B. O. & Milligan, R. A. Architecture and design of the nuclear pore complex. Cell 69, 1133–1141 (1992)

    Article  CAS  PubMed  Google Scholar 

  11. Kiseleva, E. et al. Yeast nuclear pore complexes have a cytoplasmic ring and internal filaments. J. Struct. Biol. 145, 272–288 (2004)

    Article  CAS  PubMed  Google Scholar 

  12. Stoffler, D. et al. Cryo-electron tomography provides novel insights into nuclear pore architecture: implications for nucleocytoplasmic transport. J. Mol. Biol. 328, 119–130 (2003)

    Article  CAS  PubMed  Google Scholar 

  13. Yang, Q., Rout, M. P. & Akey, C. W. Three-dimensional architecture of the isolated yeast nuclear pore complex: functional and evolutionary implications. Mol. Cell 1, 223–234 (1998)

    Article  CAS  PubMed  Google Scholar 

  14. Alber, F. et al. Determining the architectures of macromolecular assemblies. Nature doi: 10.1038/nature06404 (this issue).

  15. Krull, S., Thyberg, J., Bjorkroth, B., Rackwitz, H. R. & Cordes, V. C. Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket. Mol. Biol. Cell 15, 4261–4277 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pante, N. & Kann, M. Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm. Mol. Biol. Cell 13, 425–434 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Devos, D. et al. Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLoS Biol. 2, e380 (2004)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Devos, D. et al. Simple fold composition and modular architecture of the nuclear pore complex. Proc. Natl Acad. Sci. USA 103, 2172–2177 (2006)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Fotin, A. et al. Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature 432, 573–579 (2004)

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Stagg, S. M. et al. Structure of the Sec13/31 COPII coat cage. Nature 439, 234–238 (2006)

    Article  CAS  PubMed  ADS  Google Scholar 

  21. ter Haar, E., Musacchio, A., Harrison, S. C. & Kirchhausen, T. Atomic structure of clathrin: a β propeller terminal domain joins an α zigzag linker. Cell 95, 563–573 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dokudovskaya, S. et al. Protease accessibility laddering: a proteomic tool for probing protein structure. Structure 14, 653–660 (2006)

    Article  CAS  PubMed  Google Scholar 

  23. Fath, S., Mancias, J. D., Bi, X. & Goldberg, J. Structure and organization of coat proteins in the COPII cage. Cell 129, 1325–1336 (2007)

    Article  CAS  PubMed  Google Scholar 

  24. Antonin, W. & Mattaj, I. W. Nuclear pore complexes: round the bend? Nature Cell Biol. 7, 10–12 (2005)

    Article  CAS  PubMed  Google Scholar 

  25. Drin, G. et al. A general amphipathic α-helical motif for sensing membrane curvature. Nature Struct. Mol. Biol. 14, 138–146 (2007)

    Article  CAS  Google Scholar 

  26. Conti, E., Muller, C. W. & Stewart, M. Karyopherin flexibility in nucleocytoplasmic transport. Curr. Opin. Struct. Biol. 16, 237–244 (2006)

    Article  CAS  PubMed  Google Scholar 

  27. Akey, C. W. Structural plasticity of the nuclear pore complex. J. Mol. Biol. 248, 273–293 (1995)

    CAS  PubMed  Google Scholar 

  28. Hinshaw, J. E. & Milligan, R. A. Nuclear pore complexes exceeding eightfold rotational symmetry. J. Struct. Biol. 141, 259–268 (2003)

    Article  CAS  PubMed  Google Scholar 

  29. Bryant, D. M. & Stow, J. L. The ins and outs of E-cadherin trafficking. Trends Cell Biol. 14, 427–434 (2004)

    Article  CAS  PubMed  Google Scholar 

  30. Strawn, L. A., Shen, T., Shulga, N., Goldfarb, D. S. & Wente, S. R. Minimal nuclear pore complexes define FG repeat domains essential for transport. Nature Cell Biol. 6, 197–206 (2004)

    Article  CAS  PubMed  Google Scholar 

  31. Rout, M. P., Aitchison, J. D., Magnasco, M. O. & Chait, B. T. Virtual gating and nuclear transport: the hole picture. Trends Cell Biol. 13, 622–628 (2003)

    Article  CAS  PubMed  Google Scholar 

  32. Denning, D. P., Patel, S. S., Uversky, V., Fink, A. L. & Rexach, M. Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc. Natl Acad. Sci. USA 100, 2450–2455 (2003)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. Liu, S. M. & Stewart, M. Structural basis for the high-affinity binding of nucleoporin Nup1p to the Saccharomyces cerevisiae importin-β homologue, Kap95p. J. Mol. Biol. 349, 515–525 (2005)

    Article  CAS  PubMed  Google Scholar 

  34. Peters, R. Translocation through the nuclear pore complex: selectivity and speed by reduction-of-dimensionality. Traffic 6, 421–427 (2005)

    Article  CAS  PubMed  Google Scholar 

  35. Ribbeck, K. & Gorlich, D. Kinetic analysis of translocation through nuclear pore complexes. EMBO J. 20, 1320–1330 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Isgro, T. A. & Schulten, K. Binding dynamics of isolated nucleoporin repeat regions to importin-β. Structure 13, 1869–1879 (2005)

    Article  CAS  PubMed  Google Scholar 

  37. Isgro, T. A. & Schulten, K. Association of nuclear pore FG-repeat domains to NTF2 import and export complexes. J. Mol. Biol. 366, 330–345 (2007)

    Article  CAS  PubMed  Google Scholar 

  38. Stewart, M. Molecular mechanism of the nuclear protein import cycle. Nature Rev. Mol. Cell Biol. 8, 195–208 (2007)

    Article  CAS  Google Scholar 

  39. Zilman, A., Di Talia, S., Chait, B. T., Rout, M. P. & Magnasco, M. O. Efficiency, selectivity, and robustness of nucleocytoplasmic transport. PLoS Comput. Biol. 3, e125 (2007)

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  40. Paulillo, S. M. et al. Nucleoporin domain topology is linked to the transport status of the nuclear pore complex. J. Mol. Biol. 351, 784–798 (2005)

    Article  CAS  PubMed  Google Scholar 

  41. Lim, R. Y. et al. Flexible phenylalanine-glycine nucleoporins as entropic barriers to nucleocytoplasmic transport. Proc. Natl Acad. Sci. USA 103, 9512–9517 (2006)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  42. Hawryluk-Gara, L. A., Shibuya, E. K. & Wozniak, R. W. Vertebrate Nup53 interacts with the nuclear lamina and is required for the assembly of a Nup93-containing complex. Mol. Biol. Cell 16, 2382–2394 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. King, M. C., Lusk, C. P. & Blobel, G. Karyopherin-mediated import of integral inner nuclear membrane proteins. Nature 442, 1003–1007 (2006)

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Saksena, S., Summers, M. D., Burks, J. K., Johnson, A. E. & Braunagel, S. C. Importin-α-16 is a translocon-associated protein involved in sorting membrane proteins to the nuclear envelope. Nature Struct. Mol. Biol. 13, 500–508 (2006)

    Article  CAS  Google Scholar 

  45. Aitchison, J. D., Rout, M. P., Marelli, M., Blobel, G. & Wozniak, R. W. Two novel related yeast nucleoporins Nup170p and Nup157p: complementation with the vertebrate homologue Nup155p and functional interactions with the yeast nuclear pore-membrane protein Pom152p. J. Cell Biol. 131, 1133–1148 (1995)

    Article  CAS  PubMed  Google Scholar 

  46. Marelli, M., Aitchison, J. D. & Wozniak, R. W. Specific binding of the karyopherin Kap121p to a subunit of the nuclear pore complex containing Nup53p, Nup59p, and Nup170p. J. Cell Biol. 143, 1813–1830 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Siniossoglou, S. et al. A novel complex of nucleoporins, which includes Sec13p and a Sec13p homolog, is essential for normal nuclear pores. Cell 84, 265–275 (1996)

    Article  CAS  PubMed  Google Scholar 

  48. Wente, S. R., Rout, M. P. & Blobel, G. A new family of yeast nuclear pore complex proteins. J. Cell Biol. 119, 705–723 (1992)

    Article  CAS  PubMed  Google Scholar 

  49. Unwin, P. N. & Milligan, R. A. A large particle associated with the perimeter of the nuclear pore complex. J. Cell Biol. 93, 63–75 (1982)

    Article  CAS  PubMed  Google Scholar 

  50. Scannell, D. R., Butler, G. & Wolfe, K. H. Yeast genome evolution-the origin of the species. Yeast (in the press)

  51. Schledzewski, K., Brinkmann, H. & Mendel, R. R. Phylogenetic analysis of components of the eukaryotic vesicle transport system reveals a common origin of adaptor protein complexes 1, 2, and 3 and the F subcomplex of the coatomer COPI. J. Mol. Evol. 48, 770–778 (1999)

    Article  CAS  PubMed  ADS  Google Scholar 

  52. Grandi, P. et al. A novel nuclear pore protein Nup82p which specifically binds to a fraction of Nsp1p. J. Cell Biol. 130, 1263–1273 (1995)

    Article  CAS  PubMed  Google Scholar 

  53. Belgareh, N. et al. Functional characterization of a Nup159p-containing nuclear pore subcomplex. Mol. Biol. Cell 9, 3475–3492 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bailer, S. M. et al. Nup116p associates with the Nup82p-Nsp1p-Nup159p nucleoporin complex. J. Biol. Chem. 275, 23540–23548 (2000)

    Article  CAS  PubMed  Google Scholar 

  55. Bailer, S. M., Balduf, C. & Hurt, E. The Nsp1p carboxy-terminal domain is organized into functionally distinct coiled-coil regions required for assembly of nucleoporin subcomplexes and nucleocytoplasmic transport. Mol. Cell. Biol. 21, 7944–7955 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004)

    Article  CAS  PubMed  Google Scholar 

  57. Soding, J., Biegert, A. & Lupas, A. N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244–W248 (2005)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Shio for performing the electron microscopic studies; J. Fanghänel, M. Niepel and C. Strambio-de-Castillia for help in developing the affinity purification techniques; M. Magnasco for discussions and advice; A. Kruchinsky for assistance with mass spectrometry; M. Topf, D. Korkin, F. Davis, M. S. Madhusudan, M.-Y. Shen, F. Foerster, N. Eswar, M. Kim, D. Russell, B. Peterson and B. Webb for many discussions about structure characterization by satisfaction of spatial restraints; C. Johnson, S. G. Parker, and C. Silva, T. Ferrin and T. Goddard for preparation of some figures; and S. Pulapura and X. J. Zhou for their help with the design of the conditional diameter restraint. We are grateful to J. Aitchison for discussion and suggestions. We also thank all other members of the Chait, Rout and Sali laboratories for their assistance. We acknowledge support from an Irma T. Hirschl Career Scientist Award (M.P.R.), a Sinsheimer Scholar Award (M.P.R.), a grant from the Rita Allen Foundation (M.P.R.), a grant from the American Cancer Society (M.P.R.), the Sandler Family Supporting Foundation (A.S.), the Human Frontier Science Program (A.S., L.M.V.), NSF (A.S.), and grants from the National Institutes of Health (B.T.C., M.P.R., A.S.), as well as computer hardware gifts from R. Conway, M. Homer, Intel, Hewlett-Packard, IBM and Netapp (A.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Brian T. Chait, Andrej Sali or Michael P. Rout.

Supplementary information

Supplementary Movie

The file contains Supplementary Movie 1. (MOV 32601 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alber, F., Dokudovskaya, S., Veenhoff, L. et al. The molecular architecture of the nuclear pore complex. Nature 450, 695–701 (2007). https://doi.org/10.1038/nature06405

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06405

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing