Cryptomare magmatism 4.35 Gyr ago recorded in lunar meteorite Kalahari 009

Abstract

The origin and evolution of the Moon remain controversial1,2, with one of the most important questions for lunar evolution being the timing and duration of basaltic (mare) magmatism1,3,4,5,6,7,8. Here we report the result of ion microprobe U–Pb dating of phosphates in a lunar meteorite, Kalahari 009, which is classified as a very-low-Ti mare-basalt breccia. In situ analyses of five phosphate grains, associated with basaltic clasts, give an age of 4.35 ± 0.15 billion years. These ancient phosphate ages are thought to represent the crystallization ages of parental basalt magma, making Kalahari 009 one of the oldest known mare basalts. We suggest that mare basalt volcanism on the Moon started as early as 4.35 Gyr ago, relatively soon after its formation and differentiation, and preceding the bulk of lunar volcanism which ensued after the late heavy bombardment around 3.8-3.9 Gyr (refs 7 and 8). Considering the extremely low abundances of incompatible elements such as thorium and the rare earth elements in Kalahari 009 (ref. 9) and recent remote-sensing observations illustrating that the cryptomaria tend to be of very-low-Ti basalt type10,11,12, we conclude that Kalahari 009 is our first sample of a very-low-Ti cryptomare from the Moon.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Back-scattered electron images of areas containing phosphate grains in Kalahari 009.
Figure 2: The result of in situ U–Pb dating of phosphates in Kalahari 009.

References

  1. 1

    Schultz, P. H. & Spudis, P. D. Beginning and end of lunar mare volcanism. Nature 302, 233–236 (1983)

    ADS  Article  Google Scholar 

  2. 2

    Yin, Q. et al. A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites. Nature 418, 949–951 (2002)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3

    Wieczorek, M. A. & Phillips, R. J. The “Procellarum KREEP Terrane”: Implications for mare volcanism and lunar evolution. J. Geophys. Res. 105, 20417–20430 (2000)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Hess, P. C. & Parmentier, E. M. A model for the thermal and chemical evolution of the Moon's interior: Implications for the onset of mare volcanism. Earth Planet. Sci. Lett. 134, 501–514 (1995)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Elkins-Tanton, L. T., Hager, B. H. & Grove, T. L. Magmatic effects of the lunar late heavy bombardment. Earth Planet. Sci. Lett. 222, 17–27 (2004)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Nyquist, L. E., Bogard, D. D. & Shih, C.-Y. The Century of Space Science 1325–1376 (eds Bleeker, J. A. M., Geiss, J. & Huber, M. C. E.) (Kluwer Academic, Dordrecht, 2001)

    Google Scholar 

  7. 7

    Stöffler, D. & Ryder, G. Stratigraphy and isotope ages of lunar geologic units: chronological standard for the inner solar system. Space Sci. Rev. 96, 9–54 (2001)

    ADS  Article  Google Scholar 

  8. 8

    Hiesinger, H., Head, J. W., Wolf, U., Jaumann, R. & Neukum, G. Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum. J. Geophys. Res. 108 (1). 1–27 (2003)

    Article  Google Scholar 

  9. 9

    Schulz, T. et al. Chemical composition and Lu/Hf-age of the Lunar mare basalt meteorite Kalahari 009. Meteorit. Planet. Sci. 42, A137 (2007)

    Google Scholar 

  10. 10

    Giguere, T. A. et al. Remote sensing studies of the Lomonosov-Fleming region of the Moon. J. Geophys. Res. 108 (4). 1–14 (2003)

    Article  Google Scholar 

  11. 11

    Hawke, B. R. et al. Remote sensing and geologic studies of the Balmer-Kapteyn region of the Moon. J. Geophys. Res. 110 E06004 doi: 10.1029/2004JE002383 (2005)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Hawke, B. R. et al. The earliest mare basalts. Lunar Planet. Sci. Conf. 36, abstr. 1642. (2005)

  13. 13

    Taylor, L. A. et al. Pre-4.2 AE mare-basalt volcanism in the lunar highlands. Earth Planet. Sci. Lett. 66, 33–47 (1983)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Dasch, E. J., Shih, C.-Y., Bansal, B. M., Wiesmann, H. & Nyquist, L. E. Isotopic analysis of basaltic fragments from lunar breccia 14321—chronology and petrogenesis of pre-Imbrium mare volcanism. Geochim. Cosmochim. Acta 51, 3241–3254 (1987)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Terada, K. et al. Uranium-lead systematics of phosphates in lunar basaltic regolith breccia, Meteorite Hills 01210. Earth Planet. Sci. Lett. 259, 77–84 (2007)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Anand, M. et al. Petrology and geochemistry of LaPaz icefield 02205: a new unique low-Ti mare-basalt meteorite. Geochim. Cosmochim. Acta 70, 246–264 (2006)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Anand, M. et al. Petrogenesis of lunar meteorite EET 96008. Geochim. Cosmochim. Acta 67, 3499–3518 (2003)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Leich, D. A., Kahl, S. B., Kirschbaum, A. R., Niemeyer, S. & Phinney, D. Rare gas constraints on the history of Boulder 1, Station 2, Apollo 17. The Moon 14, 407–444 (1975)

    ADS  Article  Google Scholar 

  19. 19

    Head, J. W. & Wilson, L. Lunar mare volcanism: Stratigraphy, eruption conditions, and the evolution of secondary crusts. Geochim. Cosmochim. Acta 56, 2155–2175 (1992)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Sokol, A. K. & Bischoff, A. Meteorites from Botswana. Meteorit. Planet. Sci. A 40, 177–184 (2005)

    ADS  Article  Google Scholar 

  21. 21

    Fernandes, V. A., Burgess, R., Bischoff, A., Sokol, A. K. & Haloda, J. Kalahari 009 and north east Africa 003: young (<2.5 Ga) lunar mare basalt. Lunar Planet. Sci. Conf. 38, abstr. 1611. (2007)

  22. 22

    Gillis, J. J., Jolliff, B. L. & Korotev, R. L. Lunar surface geochemistry: Global concentrations of Th, K, and FeO. Geochim. Cosmochim. Acta 68, 3791–3805 (2004)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Schultz, P. H. & Spudis, P. D. Evidence for ancient mare volcanism. Proc. Lunar Planet. Sci. Conf. 10, 2899–2918 (1979)

    ADS  Google Scholar 

  24. 24

    Hawke, B. R. & Bell, J. F. Remote sensing studies of lunar dark-halo impact craters: Preliminary results and implications for early volcanism. Proc. Lunar Planet. Sci. Conf. 12, 665–678 (1981)

    ADS  Google Scholar 

  25. 25

    Antonenko, I. Global estimates of cryptomare deposits: implications for lunar volcanism. Lunar Planet. Sci. Conf. 30, abstr. 1703. (1999)

  26. 26

    Snyder, G. A. et al. in Origin of the Earth and Moon (eds Canup, R. M. & Righter, K.) 361–395 (Univ. Arizona Press, Tucson, 2000)

    Google Scholar 

  27. 27

    Papike, J. J. et al. Evolution of the lunar crust: SIMS study of plagioclase from ferroan anorthosites. Geochim. Cosmochim. Acta 61, 2343–2350 (1997)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Dickinson, T. et al. Apollo 14 aluminous mare basalts and their possible relationship to KREEP. Proc. Lunar Planet. Sci. Conf. 15 (2). C365–C374 (1985)

    ADS  Google Scholar 

  29. 29

    Shearer, C. K. et al. Thermal and magmatic evolution of the moon. Rev. Mineral. Geochem. 60, 365–518 (2006)

    CAS  Article  Google Scholar 

  30. 30

    Sano, Y., Oyama, T., Terada, K. & Hidaka, H. Ion microprobe U-Pb dating of apatite. Chem. Geol. 153, 249–258 (1999)

    ADS  CAS  Article  Google Scholar 

  31. 31

    Ludwig, K. R. Users Manual for Isoplot/Ex: a Geochronological Toolkit for Microsoft Excel (Berkeley Geochronology Center, Special Publication 1a, 2001)

    Google Scholar 

Download references

Acknowledgements

We thank K. R. Ludwig for providing the Isoplot/Ex program for U–Pb age calibration. We thank A. G. Tindle and J. Berndt-Gerdes for assistance with microprobe work. We thank L. E. Thomas and R. A. Spicer for proof-reading the manuscript for English usage. We also thank L. E. Nyquist and J. Head for their constructive comments. This contribution is an outcome of a joint project between the Hiroshima University and the Open University. This study is partly supported by a Scientific Research Grant of the Ministry of Education, Culture, Sports, Science and Technology, the Itoh Science foundation and the German Research Foundation. M.A. acknowledges support of PPARC and RCUK fellowships.

Author Contributions K.T. and M.A. contributed equally to this work.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Kentaro Terada or Mahesh Anand.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Terada, K., Anand, M., Sokol, A. et al. Cryptomare magmatism 4.35 Gyr ago recorded in lunar meteorite Kalahari 009. Nature 450, 849–852 (2007). https://doi.org/10.1038/nature06356

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing