Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A crystallizing dense magma ocean at the base of the Earth’s mantle

Abstract

The distribution of geochemical species in the Earth’s interior is largely controlled by fractional melting and crystallization processes that are intimately linked to the thermal state and evolution of the mantle. The existence of patches of dense partial melt at the base of the Earth’s mantle1, together with estimates of melting temperatures for deep mantle phases2 and the amount of cooling of the underlying core required to maintain a geodynamo throughout much of the Earth’s history3, suggest that more extensive deep melting occurred in the past. Here we show that a stable layer of dense melt formed at the base of the mantle early in the Earth’s history would have undergone slow fractional crystallization, and would be an ideal candidate for an unsampled geochemical reservoir hosting a variety of incompatible species (most notably the missing budget of heat-producing elements) for an initial basal magma ocean thickness of about 1,000 km. Differences in 142Nd/144Nd ratios between chondrites and terrestrial rocks4 can be explained by fractional crystallization with a decay timescale of the order of 1 Gyr. These combined constraints yield thermal evolution models in which radiogenic heat production and latent heat exchange prevent early cooling of the core and possibly delay the onset of the geodynamo to 3.4–4 Gyr ago5.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic illustration of the formation and evolution of a dense basal magma ocean.
Figure 2: Sketch of the idealized model.
Figure 3: Evolution of the preferred model as a function of time.
Figure 4: Predicted element concentrations in the present-day basal magma ocean and solid mantle.

References

  1. 1

    Williams, Q. & Garnero, E. J. Seismic evidence for partial melt at the base of the Earth’s mantle. Science 273, 1528–1530 (1996)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Zerr, A., Diegeler, A. & Boehler, R. Solidus of Earth’s deep mantle. Science 281, 243–246 (1998)

    ADS  CAS  Article  PubMed  Google Scholar 

  3. 3

    Labrosse, S. Thermal and magnetic evolution of the Earth’s core. Phys. Earth Planet. Inter 140, 127–143 (2003)

    ADS  Article  Google Scholar 

  4. 4

    Boyet, M. & Carlson, R. W. 142Nd Evidence for early (> 4.53 Ga) global differentiation of the silicate Earth. Science 309, 576–581 (2005)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Ozima, M. et al. Terrestrial nitrogen and noble gases in lunar soils. Nature 436, 655–659 (2005)

    ADS  CAS  Article  PubMed  Google Scholar 

  6. 6

    Stixrude, L. & Karki, B. Structure and freezing of MgSiO3 liquid in Earth’s lower mantle. Science 310, 297–299 (2005)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Mosenfelder, J. P., Asimow, P. D. & Ahrens, T. J. Thermodynamic properties of Mg2SiO4 liquid at ultra-high pressures for shock measurements to 200 GPa on forsterite and wadsleyite. J. Geophys. Res. 112 B06208 doi: 10.1029/2006JB004364 (2007)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Knittle, E. & Jeanloz, R. Earth’s core-mantle boundary: Results of experiments at high pressures and temperatures. Science 251, 1438–1443 (1991)

    ADS  CAS  Article  PubMed  Google Scholar 

  9. 9

    Braginsky, S. I. Dynamics of the stably stratified ocean at the top of the core. Phys. Earth Planet. Inter 111, 21–34 (1999)

    ADS  Article  Google Scholar 

  10. 10

    Buffett, B. A. Earth’s core and the geodynamo. Science 288, 2007–2012 (2000)

    ADS  CAS  Article  PubMed  Google Scholar 

  11. 11

    Hofmann, A. W. Mantle geochemistry: The message from oceanic volcanism. Nature 385, 219–229 (1997)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Davaille, A. Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature 402, 756–760 (1999)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Coltice, N. & Ricard, Y. Geochemical observations and one layer mantle convection. Earth Planet. Sci. Lett. 174, 125–137 (1999)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Allègre, C. J., Hofmann, A. & O’Nions, K. The argon constraints on mantle structure. Geophys. Res. Lett. 23, 3555–3557 (1996)

    ADS  Article  Google Scholar 

  15. 15

    Sun, S. S. & McDonough, W. F. in Magmatism in the Ocean Basins (eds Saunders, A. & Norry, M.) 313–345 (Spec. Publ. Vol. 42, Geol. Soc. Lond., 1989)

    Google Scholar 

  16. 16

    Rudnick, R. L., Barth, M., Horn, I. & McDonough, W. F. Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle. Science 287, 278–281 (2000)

    ADS  CAS  Article  PubMed  Google Scholar 

  17. 17

    Boyet, M. & Carlson, R. W. A new geochemical model for the Earth’s mantle inferred from 146Sm-142Nd systematics. Earth Planet. Sci. Lett. 250, 254–268 (2006)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Corgne, A., Liebske, C., Wood, B. J., Rubie, D. C. & Frost, D. J. Silicate perovskite-melt partitioning of trace elements and geochemical signature of a deep perovskitic reservoir. Geochim. Cosmochim. Acta 69, 485–496 (2005)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Mcdonough, W. F. & Sun, S. S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Rudnick, R. L. & Fountain, D. M. Nature and composition of the continental crust: A lower crustal perspective. Rev. Geophys. 33, 267–309 (1995)

    ADS  Article  Google Scholar 

  21. 21

    Salters, V. J. M. & Stracke, A. Composition of the depleted mantle. Geochem. Geophys. Geosyst. 5 Q05004 doi: 10.1029/2003GC000597 (2004)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Hofmann, A. W. Chemical differentiation of the Earth: The relationship between mantle, continental crust and oceanic crust. Earth Planet. Sci. Lett. 90, 297–314 (1988)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Wen, L. X., Silver, P., James, D. & Kuehnel, R. Seismic evidence for a thermo-chemical boundary at the base of the Earth’s mantle. Earth Planet. Sci. Lett. 189, 141–153 (2001)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Thorne, M. S. & Garnero, E. J. Inferences on ultralow-velocity zone structure from a global analysis of SPdKS waves. J. Geophys. Res. 109 B08301 doi: 10.1029/2004JB003010 (2004)

    ADS  Article  Google Scholar 

  25. 25

    Allègre, C. J., Staudacher, T. & Sarda, P. Rare gas systematics: Formation of the atmosphere, evolution and structure of the Earth’s mantle. Earth Planet. Sci. Lett. 81, 127–150 (1987)

    ADS  Article  Google Scholar 

  26. 26

    Hernlund, J. W., Thomas, C. & Tackley, P. J. A doubling of the post-perovskite phase boundary and structure of the Earth’s lowermost mantle. Nature 434, 882–886 (2005)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Lay, T., Hernlund, J., Garnero, E. J. & Thorne, M. S. A post-perovskite lens and D” heat flux beneath the central Pacific. Science 314, 1272–1276 (2006)

    ADS  CAS  Article  PubMed  Google Scholar 

  28. 28

    Tarduno, J. A., Cottrell, R. D., Watkeys, M. K. & Bauch, D. Geomagnetic field strength 3.2 billion years ago recorded by single silicate crystals. Nature 446, 657–660 (2007)

    ADS  CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Stevenson for comments that helped us to considerably sharpen this paper. M. Moreira, C. Jaupart and M. Jellinek also provided valuable feedback. This research was supported by the SEDIT programme of INSU, the French Ministry of Research and a CIAR postdoctoral fellowship.

Author Contributions All authors contributed equally to the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Labrosse.

Supplementary information

Supplementary Notes

The file contains Supplementary Notes with additional explanations, and in particular the equations for the Sm-Nd evolution, a figure representing the trade-offs between parameters to satisfy the constraints from Nd and a table of parameters used for the model evolution. (PDF 338 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Labrosse, S., Hernlund, J. & Coltice, N. A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature 450, 866–869 (2007). https://doi.org/10.1038/nature06355

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing