Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Snowball Earth prevention by dissolved organic carbon remineralization

Abstract

The ‘snowball Earth’ hypothesis posits the occurrence of a sequence of glaciations in the Earth’s history sufficiently deep that photosynthetic activity was essentially arrested. Because the time interval during which these events are believed to have occurred immediately preceded the Cambrian explosion of life, the issue as to whether such snowball states actually developed has important implications for our understanding of evolutionary biology. Here we couple an explicit model of the Neoproterozoic carbon cycle to a model of the physical climate system. We show that the drawdown of atmospheric oxygen into the ocean, as surface temperatures decline, operates so as to increase the rate of remineralization of a massive pool of dissolved organic carbon. This leads directly to an increase of atmospheric carbon dioxide, enhanced greenhouse warming of the surface of the Earth, and the prevention of a snowball state.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The history of δ 13 C inorg variations over the past billion years as measured in sequences of carbonate rocks on land.
Figure 2: Diagram of our carbon-cycle-coupled climate model.
Figure 3: The cyclic glaciation dynamics of the coupled climate–carbon cycle model.
Figure 4: The period of the glacial cycle predicted by the coupled climate–carbon cycle model as a function of the control parameter of the model F21.
Figure 5: Examples of the distribution of land ice and sea ice during the glacial cycle.
Figure 6: Model predictions of δ13Cinorg(t ) as a function of ε(t ) through a single glacial cycle.

References

  1. Kirschvink, J. L. in The Proterozoic Biosphere: A Multi-Disciplinary Study (eds Schopf, J. W. & Klein, C.) 51–52 (Cambridge Univ. Press, Cambridge, UK, 1992)

    Google Scholar 

  2. Kaufman, A. J. An ice age in the tropics. Nature 386, 227–228 (1997)

    ADS  CAS  Article  Google Scholar 

  3. Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. A Neoproterozoic Snowball Earth. Science 281, 1342–1346 (1998)

    ADS  CAS  Article  PubMed  Google Scholar 

  4. Hoffman, P. F. & Schrag, D. P. The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14, 129–155 (2002)

    ADS  CAS  Article  Google Scholar 

  5. Runnegar, B. Loophole for snowball Earth. Nature 405, 403–404 (2000)

    CAS  Article  PubMed  Google Scholar 

  6. Knoll, A. H. Life on a Young Planet: The First Three Billion Years of Evolution on Earth 1–277 (Princeton Univ. Press, Princeton, New Jersey, 2003)

    Google Scholar 

  7. Hyde, W. T., Crowley, T. J., Baum, S. K. & Peltier, W. R. Neoproterozoic “Snowball Earth” simulations with a coupled climate/ice-sheet model. Nature 405, 425–429 (2000)

    ADS  CAS  Article  PubMed  Google Scholar 

  8. Peltier, W. R., Tarasov, L., Vettoretti, G. & Solheim, L. P. in The Extreme Proterozoic: Geology, Geochemistry and Climate (eds Jenkins, G. S. et al.) Geophys. Monogr. Ser. 146, 107–124 (AGU Press, Washington DC, 2004)

    Google Scholar 

  9. Rothman, D. H., Hayes, J. M. & Summons, R. E. Dynamics of the Neoproterozoic carbon cycle. Proc. Natl Acad. Sci. USA 100, 8124–8129 (2003)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Allen, P. A. Snowball Earth on trial. Eos 87, 495 (2006)

    ADS  Article  Google Scholar 

  11. Moczydlowska, M. Neoproterozoic and Cambrian successions deposited on the east European platform and Cadomian basement area of Poland. Stud. Geophys. Geodaetica 39, 276–285 (1995)

    ADS  Article  Google Scholar 

  12. Grey, K. & Corkoran, M. Late Neoproterozoic stromatolites in glacigenic successions of the Kimberley region, Western Australia: evidence for a younger Marinoan glaciation. Precambr. Res. 92, 65–87 (1998)

    ADS  CAS  Article  Google Scholar 

  13. Chandler, M. A. & Sohl, L. E. Climate forcings and the initiation of low-latitude ice sheets during the Neoproterozoic Varanger glacial interval. J. Geophys. Res. 105, 20737–20756 (2000)

    ADS  CAS  Article  Google Scholar 

  14. Goodman, J. C. & Pierrehumbert, R. T. Glacial flow of floating marine ice in “Snowball Earth”. J. Geophys. Res. 108 doi: 10.1029/2002JC001471 (2003)

  15. Poulsen, C. J. & Jacob, R. L. Factors that inhibit snowball Earth simulation. Paleoceanography 19 doi: 10.1029/2004PA001056 (2004)

  16. Donnadieu, Y., Goddéris, Y., Ramstein, G., Nédélec, A. & Meert, J. A. “Snowball Earth” triggered by continental breakup through changes in runoff. Nature 428, 303–306 (2004)

    ADS  CAS  Article  PubMed  Google Scholar 

  17. Pollard, D. & Kasting, J. F. Snowball Earth: a thin ice solution with flowing sea glaciers. J. Geophys. Res. 110 doi: 10.1029/2004JC002525 (2005)

  18. Pierrehumbert, R. T. Climate dynamics of a hard snowball Earth. J. Geophys. Res. 110 doi: 10.1029/2004JD0005162 (2005)

  19. Leather, J., Allen, P. A., Brasier, M. D. & Cozzi, A. Neoproterozoic snowball Earth under scrutiny: Evidence from the Fiq glaciation of Oman. Geology 30, 891–894 (2002)

    ADS  Article  Google Scholar 

  20. Le Guerroué, E., Allen, P. A. & Cozzi, A. Chemostratigraphic and sedimentological framework of the largest negative carbon isotopic excursion in Earth history: The Neoproterozoic Shuram formation (Nafun Group, Oman). Precambr. Res. 146, 68–92 (2006)

    ADS  Article  Google Scholar 

  21. Allen, P. A., Leather, J. & Brasier, M. D. The Neoproterozoic Fiq glaciation and its aftermath: Huqf Supergroup of Oman. Basin Res. 16, 507–534 (2004)

    ADS  Article  Google Scholar 

  22. Condon, D. et al. U-Pb ages from the Neoproterozoic Doushantuo formation, China. Science 308, 95–98 (2005)

    ADS  CAS  Article  PubMed  Google Scholar 

  23. Halverson, G. P., Hoffman, P. F., Schrag, D. P., Maloof, A. C. & Rice, A. H. N. Towards a Neoproterozoic composite carbon cycle isotopic record. Geol. Soc. Am. Bull. 117, 1181–1207 (2005)

    ADS  Article  Google Scholar 

  24. Hoffman, P. F. & Schrag, D. P. Snowball Earth. Sci. Am. 282, 68–75 (2000)

    ADS  Article  Google Scholar 

  25. Eyles, N. & Januszczak, N. “Zipper-Rift”: A tectonic model for Neoproterozoic glaciations during the breakup of Rodinia after 750 Ma. Earth Sci. Rev. 65, 1–73 (2004)

    ADS  Article  Google Scholar 

  26. Schrag, D. P. & Hoffman, P. F. Life, geology, and snowball Earth. Nature 9, 306 (2001)

    ADS  Article  Google Scholar 

  27. Tarasov, L. & Peltier, W. R. Arctic freshwater forcing of the Younger-Dryas cold reversal. Nature 435, 662–665 (2005)

    ADS  CAS  Article  PubMed  Google Scholar 

  28. Kump, L. R. & Arthur, M. A. Interpreting carbon-isotope excursions: carbonates and organic matter. Chem. Geol. 161, 181–198 (1999)

    ADS  CAS  Article  Google Scholar 

  29. Ramanathan, V., Lian, M. S. & Cess, R. D. Increasing atmospheric CO2: zonal and seasonal estimates of the effect on the radiation energy balance and surface temperature. J. Geophys. Res. 84, 4949–4958 (1979)

    ADS  Article  Google Scholar 

  30. Marshall, H. G., Walker, J. C. G. & Kuhn, W. R. Long-term climate change and the geochemical cycle of carbon. J. Geophys. Res. 93, 791–801 (1988)

    ADS  CAS  Article  PubMed  Google Scholar 

  31. Pierrehumbert, R. T. High levels of atmospheric carbon dioxide necessary for the termination of global glaciation. Nature 429, 646–649 (2004)

    ADS  CAS  Article  PubMed  Google Scholar 

  32. Christie-Blick, N., von der Borch, C. C. & Dibona, P. A. Working hypotheses for the origin of the Wonoka canyons (Neoproterozoic), South Australia. Am. J. Sci. A 290, 295–332 (1990)

    Google Scholar 

  33. Christie-Blick, N., Williams, G. E. & Gostin, V. A. Discussion on mantle plume uplift in the sedimentary record: Origin of kilometre-deep canyons within late Neoproterozoic successions, South Australia. J. Geol. Soc. 158, 573–576 (2001)

    ADS  Article  Google Scholar 

  34. Peltier, W. R. & Fairbanks, R. G. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quat. Sci. Rev. 25, 3322–3337 (2006)

    ADS  Article  Google Scholar 

  35. Fike, D. A., Grotzinger, J. P., Pratt, L. M. & Summons, R. E. Oxidation of the Ediacaran ocean. Nature 444, 744–747 (2006)

    ADS  CAS  Article  PubMed  Google Scholar 

  36. Bidigare, R. R. et al. Consistent fractionation of 13C in nature and in the laboratory: growth-rate effects in some haptophyte algae. Glob. Biogeochem. Cycles 11, 279–292 (1997)

    ADS  CAS  Article  Google Scholar 

  37. Walker, J. C. G., Hays, P. B. & Kasting, J. F. A negative feedback mechanism for the long term stabilization of earth’s surface temperature. J. Geophys. Res. 86, 9776–9782 (1981)

    ADS  CAS  Article  Google Scholar 

  38. Berner, R. A., Lasaga, A. C. & Garrels, R. M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283, 641–683 (1983)

    ADS  CAS  Article  Google Scholar 

  39. Berner, R. A. The Phanerozoic Carbon Cycle: CO2 and O2 1–150 (Oxford Univ. Press, Oxford, UK, 2004)

    Google Scholar 

  40. Garcia, H. E. & Gordon, L. I. Oxygen solubility in sea water: Better fitting equations. Limnol. Oceanogr. 37, 1307–1312 (1992)

    ADS  CAS  Article  Google Scholar 

  41. Poulsen, C. J., Pierrehumbert, R. T. & Jacob, R. L. Impact of ocean dynamics on the simulation of the Neoproterozoic “snowball Earth”. Geophys. Res. Lett. 28 doi: 10.1029/2000GL012058 (2001)

  42. North, G. R., Mengel, J. G. & Short, D. A. Simple energy balance model resolving the seasons and continents: application to the astronomical theory of the ice ages. J. Geophys. Res. 88, 6576–6586 (1983)

    ADS  Article  Google Scholar 

  43. Deblonde, G., Peltier, W. R. & Hyde, W. T. Simulations of continental ice sheet growth over the last glacial-interglacial cycle: experiments with a one level seasonal energy balance model including seasonal ice albedo feedback. Glob. Planet. Change 98, 37–55 (1992)

    ADS  Article  Google Scholar 

  44. Peltier, W. R. Postglacial variations in the level of the sea: implications for climate dynamics and solid-earth geophysics. Rev. Geophys. 36, 603–689 (1998)

    ADS  Article  Google Scholar 

  45. Butler, S. L., Peltier, W. R. & Costin, S. O. Numerical models of the earth’s thermal history: Effects of inner core solidification and core potassium. Phys. Earth Planet. Inter. 152, 22–42 (2005)

    ADS  CAS  Article  Google Scholar 

  46. Hyde, W. T., Crowley, T. J., Tarasov, L. & Peltier, W. R. The Pangean ice-age: Studies with a coupled climate-ice sheet model. Clim. Dyn. 15, 619–629 (1999)

    Article  Google Scholar 

  47. Hyde, W. T., Grossman, E. L., Crowley, T. J., Pollard, D. & Scotese, C. R. Siberian glaciation as a constraint on Permian-Carboniferous CO2 levels. Geology 34, 421–424 (2006)

    ADS  CAS  Article  Google Scholar 

  48. Berner, R. A. GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2 . Geochim. Cosmochim. Acta 70, 5653–5664 (2006)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

This paper is a contribution to the Polar Climate Stability Network, which is sponsored by the Canadian Foundation for Climate and Atmospheric Science and a consortium of Canadian universities. Additional assistance was provided by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Richard Peltier.

Supplementary information

Supplementary Information

The file contains Supplementary Notes which provide a detailed mathematical derivation of the Carbon Cycle model as well as a discussion of the settings employed for the initial values of the parameters of the model. Figures S1 and S2 display time series of land ice volume for X=1 and X=2 respectively, both figures demonstrating the trend of increasing period as the value of the control parameter F21 decreases. Figure S3 illustrates the phase relationships between 6 different (normalized) field variables of the model whereas Figure S4 is similar to Figure 6 in the main body of the paper but is based upon the predictions of the model for X = 1. (PDF 1199 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Peltier, W., Liu, Y. & Crowley, J. Snowball Earth prevention by dissolved organic carbon remineralization. Nature 450, 813–818 (2007). https://doi.org/10.1038/nature06354

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06354

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing