Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Element-selective imaging of atomic columns in a crystal using STEM and EELS


Microstructure characterization has become indispensable to the study of complex materials, such as strongly correlated oxides, and can obtain useful information about the origin of their physical properties. Although atomically resolved measurements have long been possible, an important goal in microstructure characterization is to achieve element-selective imaging at atomic resolution. A combination of scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS)1,2 is a promising technique for atomic-column analysis. However, two-dimensional analysis has not yet been performed owing to several difficulties, such as delocalization in inelastic scattering or instrumentation instabilities. Here we demonstrate atomic-column imaging of a crystal specimen using localized inelastic scattering and a stabilized scanning transmission electron microscope3. The atomic columns of La, Mn and O in the layered manganite La1.2Sr1.8Mn2O7 are visualized as two-dimensional images.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conventional STEM-EELS observations.
Figure 2: Atomic-column imaging using STEM and EELS.

Similar content being viewed by others


  1. Pennycook, S. J. & Nellist, P. D. in Impact of Electron and Scanning Probe Microscopy on Materials Science (eds Rickerby, D. G., Valdre, G. & Valdre, U.) 161–207 (Kluwer Academic, London, 1999)

    Book  Google Scholar 

  2. Jeanguillaume, C. & Colliex, C. Spectrum-image: The next step in EELS digital acquisition and processing. Ultramicroscopy 28, 252–257 (1989)

    Article  Google Scholar 

  3. Kimoto, K., Nakamura, K., Aizawa, S., Isakozawa, S. & Matsui, Y. Development of dedicated STEM with high stability. J. Electron Microsc. 56, 17–20 (2007)

    Article  Google Scholar 

  4. Pennycook, S. J. & Boatner, L. A. Chemically sensitive structure-imaging with a scanning transmission electron microscope. Nature 336, 565–567 (1988)

    Article  CAS  ADS  Google Scholar 

  5. Batson, P. E., Dellby, N. & Krivanek, O. L. Sub-ångstrom resolution using aberration corrected electron optics. Nature 418, 617–620 (2002)

    Article  CAS  ADS  PubMed  Google Scholar 

  6. Muller, D. A., Nakagawa, N., Ohtomo, A., Grazul, J. L. & Hwang, H. Y. Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3 . Nature 430, 657–661 (2004)

    Article  CAS  ADS  PubMed  Google Scholar 

  7. Egerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope 2nd edn (Plenum, New York, 1996)

    Book  Google Scholar 

  8. Colliex, C. International Tables for Crystallography Vol. C (eds Wilson, A. J. C. & Prince, E.) 387–408 (Kluwer Academic, London, 1999)

    Google Scholar 

  9. Batson, P. E. Simultaneous STEM imaging and electron energy-loss spectroscopy with atomic-column sensitivity. Nature 366, 727–728 (1993)

    Article  CAS  ADS  Google Scholar 

  10. Varela, M. et al. Spectroscopic imaging of single atoms within a bulk solid. Phys. Rev. Lett. 92, 095502 (2004)

    Article  CAS  ADS  PubMed  Google Scholar 

  11. Howie, A. Inelastic scattering of electrons by crystals I. The theory of small-angle inelastic scattering. Proc. R. Soc. Lond. A 271, 268–287 (1963)

    Article  CAS  ADS  Google Scholar 

  12. Muller, D. A. & Silcox, J. Delocalization in inelastic scattering. Ultramicroscopy 59, 195–213 (1995)

    Article  CAS  Google Scholar 

  13. Oxley, M. P., Cosgriff, E. C. & Allen, L. J. Nonlocality in imaging. Phys. Rev. Lett. 94, 203906 (2005)

    Article  CAS  ADS  PubMed  Google Scholar 

  14. Oxley, M. P. et al. Interpreting atomic-resolution spectroscopic images. Phys. Rev. B 76, 064303 (2007)

    Article  ADS  Google Scholar 

  15. Allen, L. J., Findlay, S. D., Oxley, M. P., Witte, C. & Zaluzec, N. J. Modelling high-resolution electron microscopy based on core-loss spectroscopy. Ultramicroscopy 106, 1001–1011 (2006)

    Article  CAS  PubMed  Google Scholar 

  16. Kimoto, K. & Matsui, Y. Experimental investigation of phase contrast formed by inelastically scattered electrons. Ultramicroscopy 96, 335–342 (2003)

    Article  CAS  PubMed  Google Scholar 

  17. Ann, C. C. Transmission Electron Energy Loss Spectrometry in Materials Science and the EELS Atlas (John Wiley & Sons, New York, 2004)

    Google Scholar 

  18. Muller, D. A. & Grazul, J. Optimizing the environment for sub-0.2 nm scanning transmission electron microscopy. J. Electron Microsc. 50, 219–226 (2001)

    CAS  Google Scholar 

  19. Kimura, T., Tomioka, Y., Asamitsu, A. & Tokura, Y. Anisotropic magnetoelastic phenomena in layered manganite crystals: Implication of change in orbital state. Phys. Rev. Lett. 81, 5920–5923 (1998)

    Article  CAS  ADS  Google Scholar 

  20. Kimura, T. & Tokura, Y. Layered magnetic manganites. Annu. Rev. Mater. Sci. 30, 451–474 (2000)

    Article  CAS  ADS  Google Scholar 

  21. Asaka, T. et al. Observation of magnetic ripple and nanowidth domains in a layered ferromagnet. Phys. Rev. Lett. 95, 227204 (2005)

    Article  CAS  ADS  PubMed  Google Scholar 

  22. Battle, P. D. et al. Layered Ruddlesden-Popper manganese oxides: synthesis and cation ordering. Chem. Mater. 9, 552–559 (1997)

    Article  CAS  Google Scholar 

  23. Suenaga, K. et al. Element-selective single atom imaging. Science 290, 2280–2282 (2000)

    Article  CAS  ADS  PubMed  Google Scholar 

  24. Bosman, M. et al. Two-dimensional mapping of chemical information at atomic resolution. Phys. Rev. Lett. 99, 086102 (2007)

    Article  CAS  ADS  PubMed  Google Scholar 

Download references


We thank Y. Tokura and T. Kimura for providing the manganite specimen. We thank R. F. Egerton, M. Malac, K. Suenaga and H. Kurata for discussions and encouragement. We also thank M. Barfels, M. Kundmann and J. Hunt (Gatan) for their cooperation in the installation of an EEL spectrometer, and T. Yokosawa (NIMS), K. Nakamura, S. Aizawa and S. Isakozawa (Hitachi High-Technologies) for their cooperation in developing the STEM. This work is partly supported by JST-CREST, a Nanotechnology Support Project by MEXT, Japan, and by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Koji Kimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimoto, K., Asaka, T., Nagai, T. et al. Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature 450, 702–704 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing