Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The centromere geometry essential for keeping mitosis error free is controlled by spindle forces

Abstract

Accurate segregation of chromosomes, essential for the stability of the genome, depends on ‘bi-orientation’—simultaneous attachment of each individual chromosome to both poles of the mitotic spindle1. On bi-oriented chromosomes, kinetochores (macromolecular complexes that attach the chromosome to the spindle) reside on the opposite sides of the chromosome’s centromere2. In contrast, sister kinetochores shift towards one side of the centromere on ‘syntelic’ chromosomes that erroneously attach to one spindle pole with both sister kinetochores. Syntelic attachments often arise during spindle assembly and must be corrected to prevent chromosome loss3. It is assumed that restoration of proper centromere architecture occurs automatically owing to elastic properties of the centromere1,2. Here we test this assumption by combining laser microsurgery and chemical biology assays in cultured mammalian cells. We find that kinetochores of syntelic chromosomes remain juxtaposed on detachment from spindle microtubules. These findings reveal that correction of syntelic attachments involves an extra step that has previously been overlooked: external forces must be applied to move sister kinetochores to the opposite sides of the centromere. Furthermore, we demonstrate that the shape of the centromere is important for spindle assembly, because bipolar spindles do not form in cells lacking centrosomes when multiple chromosomes with juxtaposed kinetochores are present. Thus, proper architecture of the centromere makes an important contribution to achieving high fidelity of chromosome segregation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Juxtaposed sister kinetochores on syntelic chromosomes do not return to opposite sides of the centromere in the absence of microtubules.
Figure 2: Frequencies of chromosomes with juxtaposed sister kinetochores observed under different experimental conditions.
Figure 3: Monopolar spindles do not bipolarize and sister kinetochores remain juxtaposed on monastrol washout in the absence of centrosomes.
Figure 4: Proper organization of the centromere is required for successful spindle formation in the absence of centrosomes.

Similar content being viewed by others

References

  1. Nicklas, R. B. How cells get the right chromosomes. Science 275, 632–637 (1997)

    Article  CAS  PubMed  Google Scholar 

  2. Rieder, C. L. & Salmon, E. D. The vertebrate kinetochore and its roles during mitosis. Trends Cell Biol. 8, 310–318 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cimini, D. & Degrassi, F. Aneuploidy: a matter of bad connections. Trends Cell Biol. 8, 442–451 (2005)

    Article  Google Scholar 

  4. Ault, J. G. & Nicklas, R. B. Tension, microtubule rearrangements, and the proper distribution of chromosomes in mitosis. Chromosoma 98, 33–39 (1989)

    Article  CAS  PubMed  Google Scholar 

  5. Nicklas, R. B. & Ward, S. C. Elements of error correction in mitosis: microtubule capture, release, and tension. J. Cell Biol. 126, 1241–1253 (1994)

    Article  CAS  PubMed  Google Scholar 

  6. Lampson, M. A., Renduchitala, K., Khodjakov, A. & Kapoor, T. M. Correcting improper chromosome–spindle attachments during cell division. Nature Cell Biol. 6, 232–237 (2004)

    Article  CAS  PubMed  Google Scholar 

  7. Kline-Smith, S. L., Khodjakov, A., Hergert, P. & Walczak, C. E. Depletion of centromeric MCAK leads to chromosome congression and segregation defects due to improper kinetochore attachments. Mol. Biol. Cell 15, 1146–1159 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Andrews, P. D. et al. Aurora B regulates MCAK at the mitotic centromere. Dev. Cell 6, 253–268 (2004)

    Article  CAS  PubMed  Google Scholar 

  9. Sullivan, K. F. & Shelby, R. D. Using time-lapse confocal microscopy for analysis of centromere dynamics in human cells. Methods Cell Biol. 58, 183–202 (1999)

    Article  CAS  PubMed  Google Scholar 

  10. Poirier, M. G. & Marko, J. F. Micromechanical studies of mitotic chromosomes. Curr. Top. Dev. Biol. 55, 75–141 (2003)

    Article  CAS  PubMed  Google Scholar 

  11. Kapoor, T. M., Mayer, T. U., Coughlin, M. L. & Mitchison, T. J. Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. J. Cell Biol. 150, 975–988 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Khodjakov, A., Copenagle, L., Gordon, M. B., Compton, D. A. & Kapoor, T. M. Minus-end capture of preformed kinetochore fibers contributes to spindle morphogenesis. J. Cell Biol. 160, 671–683 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khodjakov, A. & Rieder, C. L. The sudden recruitment of γ-tubulin to the centrosome at the onset of mitosis and its dynamic exchange throughout the cell cycle, do not require microtubules. J. Cell Biol. 146, 585–596 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Khodjakov, A., Cole, R. W., Oakley, B. R. & Rieder, C. L. Centrosome-independent mitotic spindle formation in vertebrates. Curr. Biol. 10, 59–67 (2000)

    Article  CAS  PubMed  Google Scholar 

  15. Khodjakov, A. & Rieder, C. L. Centrosomes enhance the fidelity of cytokinesis in vertebrates and are required for cell cycle progression. J. Cell Biol. 153, 237–242 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Compton, D. A. Focusing on spindle poles. J. Cell Sci. 111, 1477–1481 (1998)

    Article  CAS  PubMed  Google Scholar 

  17. Rieder, C. L. & Alexander, S. P. Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells. J. Cell Biol. 110, 81–95 (1990)

    Article  CAS  PubMed  Google Scholar 

  18. Maiato, H., Rieder, C. L. & Khodjakov, A. Kinetochore-driven formation of kinetochore fibers contributes to spindle assembly during animal mitosis. J. Cell Biol. 167, 831–840 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tulu, U. S., Fagerstrom, C., Ferenz, N. P. & Wadsworth, P. Molecular requirements for kinetochore-associated microtubule formation in mammalian cells. Curr. Biol. 16, 536–541 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Indjeian, V. B., Stern, B. M. & Murray, A. W. The centromeric protein Sgo1 is required to sense lack of tension on mitotic chromosomes. Science 307, 130–133 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Li, X. & Nicklas, R. B. Mitotic forces control a cell-cycle checkpoint. Nature 373, 630–632 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Waters, J. C., Chen, R.-H., Murray, A. W. & Salmon, E. D. Localization of Mad2 to kinetochores depends on microtubule attachment, not tension. J. Cell Biol. 141, 1181–1191 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cimini, D. et al. Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue cells. J. Cell Biol. 153, 517–528 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rieder, C. L., Cole, R. W., Khodjakov, A. & Sluder, G. The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J. Cell Biol. 130, 941–948 (1995)

    Article  CAS  PubMed  Google Scholar 

  25. Rieder, C. L., Schultz, A., Cole, R. & Sluder, G. Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. J. Cell Biol. 127, 1301–1310 (1994)

    Article  CAS  PubMed  Google Scholar 

  26. Cassimeris, L., Rieder, C. L. & Salmon, E. D. Microtubule assembly and kinetochore directional instability in vertebrate monopolar spindles: implications for the mechanism of chromosome congression. J. Cell Sci. 107, 285–297 (1994)

    Article  PubMed  Google Scholar 

  27. Kapoor, T. M. et al. Chromosomes can congress to the metaphase plate before biorientation. Science 311, 388–391 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Magidson, V., Loncarek, J., Hergert, P., Rieder, C. L. & Khodjakov, A. in Laser Manipulations of Cells and Tissues (eds Berns, M. W. & Greulich, K. O.) 237–266 (Elsevier, 2007)

    Book  Google Scholar 

  29. Mayer, T. U. et al. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286, 971–974 (1999)

    Article  CAS  PubMed  Google Scholar 

  30. La Terra, S. et al. The de novo centriole assembly pathway in HeLa cells: cell cycle progression and centriole assembly/maturation. J. Cell Biol. 168, 713–720 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Khodjakov, A., Cole, R. W., McEwen, B. F., Buttle, K. F. & Rieder, C. L. Chromosome fragments possessing only one kinetochore can congress to the spindle equator. J. Cell Biol. 136, 229–240 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank B. McEwen, C. Rieder and V. Magidson for fruitful discussions and critical reading of the manuscript. This work was supported by grants from the National Institutes of Health grants (to A.K. and T.M.K.). Assembly of our laser microsurgery system was supported in part by a Nikon/MBL fellowship (A.K.). We acknowledge the use of Wadsworth Centre’s electron microscopy core facility.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tarun M. Kapoor or Alexey Khodjakov.

Supplementary information

Supplementary Figures

The file contains Supplementary Figures S1-S6 with Legends. (PDF 2537 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lončarek, J., Kisurina-Evgenieva, O., Vinogradova, T. et al. The centromere geometry essential for keeping mitosis error free is controlled by spindle forces. Nature 450, 745–749 (2007). https://doi.org/10.1038/nature06344

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06344

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing